题目内容

甲车停在平直公路上,乙车以速度v0=20m/s从甲车旁驶过,同时甲车启动开始追赶乙车。已知甲车的启动加速度为a=5m/s2,达到其最大速度v=30m/s后做匀速运动。试问:

(1)甲车追上乙车时是在加速阶段还是匀速阶段?

(2)甲车追上乙车一共所花的时间是多少?

 

【答案】

(1)甲车追上乙车必然在匀速阶段(2)t=9s

【解析】(1)经时间t0甲车达到最大速度,有

v=at0                         

带入数据得t0=6s               (1)

甲车位移

x1=               (2)

乙车位移

x2=v0t0=120m                   (3)

因为x1< x2,所以甲车追上乙车必然在匀速阶段

(2)设甲车追上乙车共花时间t

甲车位移为

s1=x1+v(t-t0)                    (4)

乙车位移为

s2=v0t                         (5)

甲车追上乙车时

s1=s2                          (6)

由(4)(5)(6)解得

t=9s                           (7)

评分标准:

(1)问4分,只要判断方法正确都给分,没有判断依据不给分。

(2)问6分,(4)(5)各2分,(6)(7)各1分。

本题考查匀变速直线运动中的追击相遇问题,判断在哪个阶段追上乙车,可用假设法判断,假设匀加速阶段追上,由v=at可计算出速度增大到最大时所用的时间,由此求得乙车位移大小,再由位移与时间的关系求得甲车速度增大到最大时的位移,两个位移比较大小就能判断,在匀速阶段追上乙车,先计算出匀加速阶段位移和时间,设加速t时刻后追上乙车,由时间和位移上的等量关系列公式求解

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网