ÌâÄ¿ÄÚÈÝ
8£®Èçͼ£¬ÏßȦµÄÃæ»ýÊÇ0.05m2£¬¹²100ÔÑ£¬ÏßȦ×ܵç×èΪ1¦¸£¬Íâ½Óµç×èR=9¦¸£¬ÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪB=$\frac{1}{¦Ð}T$£¬µ±ÏßȦÒÔ300r/minµÄתËÙÔÈËÙÐýתʱ£¬Ç󣺣¨1£©Èô´ÓÏßȦ´¦ÓÚÖÐÐÔÃ濪ʼ¼Æʱ£¬Ð´³öÏßȦÖиÐÓ¦µç¶¯ÊƵÄ˲ʱֵ±í´ïʽ£»
£¨2£©µç·Öеçѹ±í¡¢µçÁ÷±íµÄʾÊý¸÷ÊǶàÉÙ£¿
£¨3£©Ïß¿òת¶¯Ò»ÖÜÍâÁ¦×öµÄ¹¦Îª¶àÉÙ£¿
£¨4£©Ïß¿ò´ÓͼʾλÖÃת¹ý30¡ãµÄ¹ý³ÌÖÐͨ¹ýµç×èRµÄµçÁ¿Îª¶àÉÙ£¿
·ÖÎö £¨1£©¸ù¾ÝEm=nBS¦ØÇó³ö×î´óÖµ£¬´ÓÏßȦ¾¹ýÖÐÐÔÃ濪ʼ¼Æʱ£¬Ë²Ê±ÖµÎªe=Emsin¦Øt£»
£¨2£©¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂÉÇó½âµçÁ÷£¬¸ù¾ÝU=IRÇó½âÍâµçѹ£»
£¨3£©¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨Âɹ«Ê½Çó½âµç¶¯ÊƵÄƽ¾ùÖµ£¬ÔÙ¸ù¾ÝÅ·Ä·¶¨ÂÉÇó½âµçÁ÷µÄƽ¾ùÖµ£»
£¨4£©¸ù¾Ýq=$\overline{I}$tÇó½âͨ¹ýµç×èRµÄµçÁ¿£®
½â´ð ½â£º£¨1£©n=300r/min=5r/s£»
½ÇËٶȦØ=2¦Ðn=10¦Ð£»
ת¶¯¹ý³ÌÖÐÏßȦÖеÄ×î´ó¸ÐÓ¦µç¶¯ÊÆ
Em=n¡äBS¦Ø=100¡Á$\frac{1}{¦Ð}$¡Á0.01¡Á10¦Ð=10V
¸ÐÓ¦µç¶¯ÊƵÄ˲ʱ±í´ïʽΪ
e=10sin10¦Ðt£¨V£©
£¨2£©ÏßȦÔÚת¶¯¹ý³ÌÖУ¬µçÁ÷±íʾÊýΪ
I=$\frac{E}{R+r}$=$\frac{\frac{{E}_{m}}{\sqrt{2}}}{R+r}$=$\frac{10}{\sqrt{2}¡Á£¨9+1£©}$=$\frac{\sqrt{2}}{2}$
Ôòµçѹ±íµÄʾÊý$U=IR=\frac{{\sqrt{2}}}{2}¡Á9=4.5\sqrt{2}=6.3V$
£¨3£©Ò»ÖÜÄÚÍâÁ¦×öµÄ¹¦µÈÓÚÄÚÄܵÄÔö¼ÓÁ¿£»
¹ÊW=I2£¨R+r£©t=£¨$\frac{\sqrt{2}}{2}$£©2¡Á£¨9+1£©¡Á$\frac{2¦Ð}{¦Ø}$=1J£»
£¨4£©ÏßȦ´ÓÖÐÐÔÃ濪ʼת¹ý90¡ãµÄ¹ý³ÌÖУ¬´ÅͨÁ¿µÄ±ä»¯Á¿¡÷¦Õ=BS=0.01¡Á$\frac{1}{¦Ð}$=$\frac{1}{¦Ð}$¡Á10-2Wb£»
ËùÓÃʱ¼ä¡÷t=$\frac{\frac{¦Ð}{2}}{2¦Ðn}$=5¡Á10-2s
Ôòƽ¾ù¸ÐÓ¦µç¶¯ÊÆΪ $\overline E=n\frac{¡÷¦Õ}{¡÷t}$
ÔÚÕâ¸ö¹ý³ÌÖеÄƽ¾ùµçÁ÷Ϊ $\overline I=\frac{\overline E}{R+r}$
ͨ¹ýµÄµçÁ¿ $q=\overline I¡÷t$
ÁªÁ¢ÒÔÉϸ÷ʽÓÐͨ¹ýµçÁ÷±íµÄµçÁ¿Îª$q=n\frac{¡÷¦Õ}{R+r}=100¡Á\frac{{\frac{1}{¦Ð}¡Á1{0^{-2}}}}{9+1}=\frac{1}{¦Ð}¡Á1{0^{-1}}C$
´ð£º£¨1£©´ÓÈçͼ¿ªÊ¼¼Æʱ£¬ÏßȦÖиÐÓ¦µç¶¯ÊƵÄ˲ʱ±í´ïʽΪe=10sin10¦Ðt£¨V£©£»
£¨2£©µç·Öеçѹ±íʾÊýΪ6.3V£»µçÁ÷±íʾÊýÊÇ$\frac{\sqrt{2}}{2}$A£»
£¨3£©ÍâÁ¦Ëù×öµÄ¹¦Îª1J£»
£¨4£©ÏßȦ´ÓͼʾλÖÃת¶¯90¡ã¹ý³ÌÖУ¬Í¨¹ýµç×èRµÄµçÁ¿Îª$\frac{1}{¦Ð}$¡Á10-1C£»
µãÆÀ ±¾Ìâ¹Ø¼üÃ÷È·½»Á÷µç×î´óÖµ¡¢ÓÐЧֵ¡¢Ë²Ê±ÖµºÍƽ¾ùÖµµÄÇó½â·½·¨£¬×¢Òâ½»Á÷µç±í²âÁ¿µÄÊÇÓÐЧֵ£®
A£® | a1=a2£¬¿ÉÄܲ»ÏàÓö | B£® | a1£¼a2£¬²»¿ÉÄÜÏàÓö¶þ´Î | ||
C£® | a1£¾a2£¬¿ÉÄÜÏàÓö¶þ´Î | D£® | a1£¼a2£¬¿ÉÄܲ»ÏàÓö |
A£® | ÔÏßȦÔÑÊýn1Ôö¼Ó | B£® | ¸±ÏßȦÔÑÊýn2Ôö¼Ó | ||
C£® | ¸ºÔصç×èRµÄ×èÖµÔö´ó | D£® | ¸ºÔصç×èRµÄ×èÖµ¼õС |
A£® | 4m | B£® | 36m | C£® | 6.25m | D£® | ÒÔÉϴ𰸶¼²»¶Ô |