ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿Ò»¸öÎïÌå×öÔȱäËÙÖ±ÏßÔ˶¯£¬³õËÙ¶ÈΪv0£¬¼ÓËÙ¶ÈΪa£¬Ô˶¯Ê±¼äΪt£¬Ä©ËÙ¶ÈΪv£¬Î»ÒÆΪx¡£ÇëÍê³ÉÏÂÁÐÎÊÌâ¡£
(1)¸ù¾Ý¼ÓËٶȵĶ¨Òåʽ£¬ÍƵ¼ÔȱäËÙÖ±ÏßÔ˶¯µÄv-t¹Øϵ£ºv=v0+at
(2)¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄv-t¹ØϵÒÔ¼°x-t¹Øϵ£¬ÍƵ¼ÔȱäËÙÔ˶¯ËÙ¶È-λÒƹØϵʽ£ºv2-v02=2ax
(3)ÎïÌåÔÚÒ»¶Îʱ¼äÄÚµÄƽ¾ùËٶȶ¨ÒåΪ£º=£¬ÆäÖУ¬tΪÔ˶¯µÄ×Üʱ¼ä£¬xΪÕâ¶Îʱ¼äÄÚµÄ×ÜλÒÆ¡£Èôv1±íʾÔȱäËÙÖ±ÏßÔ˶¯Öеãʱ¿Ì£¨¼´£©µÄ˲ʱËٶȡ£ÇëÖ¤Ã÷£¬ÎïÌå×öÔȱäËÙÖ±ÏßÔ˶¯Ê±£ºv1==
¡¾´ð°¸¡¿£¨1£©¼û½âÎö£¨2£©¼û½âÎö£¨3£©¼û½âÎö
¡¾½âÎö¡¿
(1)ÓɼÓËٶȶ¨Òåʽa=£¬Ëٶȱ仯Á¿=v-v0£¬=t
µÃ
a=
ÕûÀíµÃ
v=v0+at
(2)ÓÉËٶȹ«Ê½v=v0+at£¬Î»Òƹ«Ê½x=v0t+at2
Á½Ê½Ïûȥʱ¼äÕûÀíµÃ
v2-v02=2ax
(3)ÓÉËٶȹ«Ê½
==
ËùÒÔ=v1£¬ÒòΪv=v0+at£¬
ËùÒÔv1-v0=at£¬
v-v1=at
ËùÒÔ
2v1=v+v0
ÕûÀíµÃ
v1==
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿