ÌâÄ¿ÄÚÈÝ
11£®ÓêµÎÔÚ¿ÕÖÐÏÂÂäʱ»áÊܵ½¿ÕÆø×èÁ¦£¬×èÁ¦fµÄ´óСÓëÓêµÎµÄ½ØÃæ»ýS³ÉÕý±È£¬ÓëÓêµÎÏÂÂäËÙÂÊvµÄ¶þ´Î·½³ÉÕý±È£¬¼´f=kSv2£¬ÆäÖÐkΪÒÑÖªµÄ³£Êý£®ÃܶÈΪ¦Ñ¡¢°ë¾¶ÎªrµÄÓêµÎ£¬´Ó¸ßΪh´¦ÒÔ³õËÙ¶Èv0£¨ºÜС£©ÊúÖ±ÏÂÂ䣬ÂäµØÇ°ÒѾÔÈËÙÔ˶¯£®ÒÑÖª°ë¾¶ÎªrµÄÇòÌåµÄÌå»ýΪV=$\frac{4}{3}$¦Ðr3£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¬Çó£¨1£©ÓêµÎÂäµØʱµÄËÙ¶Èvmax£»
£¨2£©ÏÂÂä¹ý³ÌÖпÕÆø×èÁ¦¶ÔÓêµÎËù×öµÄ¹¦W£®
·ÖÎö £¨1£©×¥×¡ÓêµÎËùÊܵÄÖØÁ¦ºÍ¿ÕÆø×èÁ¦ÏàµÈ£¬½áºÏÇòÌåµÄÌå»ýºÍºá½ØÃæ»ý¹«Ê½Çó³ö×î´óËٶȵĴóС£®
£¨2£©È«¹ý³ÌÓÉÖØÁ¦Óë¿ÕÆø×èÁ¦×ö¹¦£¬Óɶ¯Äܶ¨Àí¿ÉÇóµÃ¿ÕÆø×èÁ¦×ö¹¦£®
½â´ð ½â£º£¨1£©ÓêµÎµÄÖÊÁ¿m=$\frac{4}{3}¦Ð{r}^{3}¦Ñ$
½ØÃæ»ýs=¦Ðr2
ÏòÏÂÔÈËÙÔ˶¯Ê±£¬ÓÐks${v}_{max}^{2}$=mg
ÁªÁ¢½âµÃ£º${v}_{max}=\sqrt{\frac{4¦Ñgr}{3k}}$
£¨2£©ÓêµÎÏÂÂä¹ý³Ì£¬Óɶ¯Äܶ¨Àí£ºmgh+W=$\frac{1}{2}m{v}_{max}^{2}-\frac{1}{2}m{v}_{0}^{2}$
½âµÃ£ºW=$\frac{2}{3}¦Ð¦Ñ{r}^{3}£¨\frac{4¦Ñgr}{3k}-{v}_{0}^{2}-2gh£©$
´ð£º£¨1£©ÓêµÎÂäµØʱµÄËÙ¶ÈΪ$\sqrt{\frac{4¦Ñgr}{3K}}$£®
£¨2£©ÏÂÂä¹ý³ÌÖпÕÆø×èÁ¦¶ÔÓêµÎËù×öµÄ¹¦Îª $\frac{2}{3}¦Ð¦Ñ{r}^{3}£¨\frac{4¦Ñgr}{3k}-{v}_{0}^{2}-2gh£©$
µãÆÀ ±¾Ì⿼²éÁ˹²µãÁ¦Æ½ºâºÍÅ£¶ÙµÚ¶þ¶¨ÂɵĻù±¾ÔËÓã¬ÖªµÀÓêµÎËÙ¶È×î´óʱ£¬ÖØÁ¦ºÍ×èÁ¦ÏàµÈ£¬Óɶ¯Äܶ¨ÀíÇ󹦣®
A£® | Ì칬һºÅÔÚ²âÊÔ¹ìµÀµÄÔ˶¯ËٶȴóÓÚµÚÒ»ÓîÖæËÙ¶È | |
B£® | Ì칬һºÅÔÚ²âÊÔ¹ìµÀ±ÈÔÚ¶Ô½Ó¹ìµÀµÄÖÜÆÚ´ó | |
C£® | Ì칬һºÅÔÚ²âÊÔ¹ìµÀ±ÈÔÚ¶Ô½Ó¹ìµÀµÄ¼ÓËٶȴó | |
D£® | Ì칬һºÅÔÚ²âÊÔ¹ìµÀ±ÈÔÚ¶Ô½Ó¹ìµÀµÄ½ÇËٶȴó |
A£® | СÇòPµÄ´øµçÁ¿»ºÂý¼õС£¬ÔòËüÍù¸´Ô˶¯¹ý³ÌÖÐÕñ·ù²»¶Ï¼õС | |
B£® | СÇòPµÄ´øµçÁ¿»ºÂý¼õС£®ÔòËüÍù¸´Ô˶¯¹ý³ÌÖÐÿ´Î¾¹ýOµãʱµÄËÙÂʲ»¶Ï¼õС | |
C£® | µãµçºÉM£¬NµÄµçÁ¿Í¬Ê±µÈÁ¿µØ»ºÂýÔö´ó£¬ÔòСÇòpÍù¸´Ô˶¯¹ý³ÌÖÐÖÜÆÚ²»¶Ï¼õС | |
D£® | µãµçºÉM£¬NµÄ´øµçÁ¿Í¬Ê±µÈÁ¿µØ»ºÂýÔö´ó£¬ÔòСÇòpÍù¸´Ô˶¯¹ý³ÌÖÐÕñ·ù²»¶Ï¼õС |
A£® | ÎïÌåm2¾²Ö¹²»¶¯ | B£® | ÎïÌåm1Óëm2Ö®¼äµÄĦ²ÁÁ¦´óСΪ3N | ||
C£® | ÎïÌåm2µÄ¼ÓËÙ¶ÈÊÇ2.5m/s2 | D£® | ÎïÌåm1µÄ¼ÓËÙ¶ÈÊÇ3m/s2 |
A£® | B¶ÔµØÃæµÄѹÁ¦´óСΪ3mg | |
B£® | µØÃæ¶ÔAµÄ×÷ÓÃÁ¦ÑØACÔ²ÐÄÁ¬Ïß·½Ïò | |
C£® | LԽС£¬A¡¢C¼äµÄµ¯Á¦Ô½Ð¡ | |
D£® | LԽС£¬µØÃæ¶ÔA¡¢BµÄĦ²ÁÁ¦Ô½´ó |
A£® | $\frac{3kQ}{4{a}^{2}}$£¬ÑØyÖáÕýÏò | B£® | $\frac{3kQ}{4{a}^{2}}$£¬ÑØyÖḺÏò | ||
C£® | $\frac{5kQ}{4{a}^{2}}$£¬ÑØyÖáÕýÏò | D£® | $\frac{5kQ}{4{a}^{2}}$£¬ÑØyÖḺÏò |