ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬ÔÚ¿Õ¼äÖÐÓÐÒ»×ø±êϵoxy£¬ÆäµÚÒ»ÏóÏÞÖгäÂú×ÅÁ½¸ö·½Ïò²»Í¬µÄÔÈÇ¿´Å³¡ÇøÓò¢ñºÍ¢ò£®Ö±ÏßOPÊÇËüÃǵı߽磮ÇøÓò¢ñÖеĴŸÐӦǿ¶ÈΪ2B£¬·½Ïò´¹Ö±Ö½ÃæÏòÄÚ£¬ÇøÓò¢òÖеĴŸÐӦǿ¶ÈΪB£¬·½Ïò´¹Ö±Ö½ÃæÏòÍ⣬±ß½çÉϵÄPµã×ø±êΪ£¨3L£¬3L£©£®Ò»ÖÊÁ¿Îªm£¬µçºÉÁ¿Îª+qµÄÁ£×Ó´ÓPµãƽÐÐÓÚyÖáÕý·½ÏòÒÔËÙ¶Èv0=
ÉäÈëÇøÓò¢ñ£¬¾ÇøÓò¢ñƫתºó½øÈëÇøÓò¢ò£¨ºöÂÔÁ£×ÓÖØÁ¦£©£¬Çó£º
£¨1£©Á£×ÓÔÚ¢ñºÍ¢òÁ½´Å³¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Ö®±È£»
£¨2£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄ×Üʱ¼ä¼°À뿪´Å³¡µÄλÖÃ×ø±ê£®
2BqL | m |
£¨1£©Á£×ÓÔÚ¢ñºÍ¢òÁ½´Å³¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Ö®±È£»
£¨2£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄ×Üʱ¼ä¼°À뿪´Å³¡µÄλÖÃ×ø±ê£®
·ÖÎö£º£¨1£©´øµçÁ£×ÓÉäÈë´Å³¡ÖУ¬ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦¶ø×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍÏòÐÄÁ¦¹«Ê½Çó°ë¾¶£¬²¢µÃµ½°ë¾¶Ö®±È£»
£¨2£©ÓÉÔ²ÖÜÔ˶¯ÖªÊ¶µÃµ½ÖÜÆÚ¹«Ê½T=
£¬Á£×ÓÔÚÇøÓò¢ñÖÐת¹ýµÄÔ²ÐĽÇΪ¦È1=
¦Ð£¬Á£×ÓÔÚÇøÓò¢ñÖÐÔ˶¯µÄʱ¼äΪt1=
T1£¬Á£×ÓÔÚÇøÓò¢òÖÐת¹ýµÄÔ²ÐĽÇΪ¦È2=
£¬Á£×ÓÔÚÇøÓò¢òÖÐÔ˶¯µÄʱ¼äΪt2=
T2£®¼´¿ÉÇóµÃ×Üʱ¼ä£®
½«v0=
´úÈë°ë¾¶¹«Ê½R=
£¬µÃµ½Á£×ÓÔÚÁ½¸ö´Å³¡ÖÐÔ²ÖÜÔ˶¯µÄ°ë¾¶£¬Óɼ¸ºÎ¹ØϵÇó³öÁ£×ÓÀ뿪´Å³¡µÄλÖÃ×ø±ê£®
£¨2£©ÓÉÔ²ÖÜÔ˶¯ÖªÊ¶µÃµ½ÖÜÆÚ¹«Ê½T=
2¦Ðm |
qB |
3 |
2 |
¦È1 |
2¦Ð |
¦Ð |
2 |
¦È2 |
2¦Ð |
½«v0=
2BqL |
m |
mv |
qB |
½â´ð£º½â£º£¨1£©´øµçÁ£×ÓÉäÈë´Å³¡ÖУ¬ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦¶ø×öÔÈËÙÔ²ÖÜÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
qvB=m
¢Ù
½âµÃ R=
¢Ú
ËùÒÔ£¬Á£×ÓÔÚ¢ñºÍ¢òÁ½´Å³¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶·Ö±ðΪ£ºR1=
£¬R2=
¢Û
½âµÃ
=
¢Ü
£¨2£©Á£×ÓÔڴų¡ÖÐÔ²ÖÜÔ˶¯µÄÖÜÆÚΪT=
¢Ý
¿ÉµÃ T1=
£¬T2=
¢Þ
Á£×ÓÔÚÇøÓò¢ñÖÐת¹ýµÄÔ²ÐĽÇΪ¦È1=
¦Ð ¢ß
Á£×ÓÔÚÇøÓò¢ñÖÐÔ˶¯µÄʱ¼äΪt1=
T1 ¢à
½âµÃt1=
¢á
Á£×ÓÔÚÇøÓò¢òÖÐת¹ýµÄÔ²ÐĽÇΪ¦È2=
¢â
Á£×ÓÔÚÇøÓò¢òÖÐÔ˶¯µÄʱ¼äΪt2=
T2 £¨11£©
½âµÃt2=
£¨12£©
ËùÒÔt=t1+t2=
£¨13£©
½«ËÙ¶Èv0=
´úÈëµÃ
R1=L£¬R2=2L £¨14£©
Óɼ¸ºÎ¹ØϵµÃ
=3L-R1£¬
=R2 £¨15£©
Á£×ÓÀ뿪´Å³¡µÄºá×ø±êΪx=
+
=4L £¨16£©
Á£×ÓÀ뿪´Å³¡µÄλÖÃ×ø±ê£¨4L£¬0£©£¨17£©
´ð£º£¨1£©Á£×ÓÔÚ¢ñºÍ¢òÁ½´Å³¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Ö®±ÈÊÇ1£º2£»
£¨2£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄ×Üʱ¼äÊÇ
£¬À뿪´Å³¡µÄλÖÃ×ø±êÊÇ£¨4L£¬0£©£®
qvB=m
v2 |
R |
½âµÃ R=
mv |
qB |
ËùÒÔ£¬Á£×ÓÔÚ¢ñºÍ¢òÁ½´Å³¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶·Ö±ðΪ£ºR1=
mv0 |
2qB |
mv0 |
qB |
½âµÃ
R1 |
R2 |
1 |
2 |
£¨2£©Á£×ÓÔڴų¡ÖÐÔ²ÖÜÔ˶¯µÄÖÜÆÚΪT=
2¦Ðm |
qB |
¿ÉµÃ T1=
¦Ðm |
qB |
2¦Ðm |
qB |
Á£×ÓÔÚÇøÓò¢ñÖÐת¹ýµÄÔ²ÐĽÇΪ¦È1=
3 |
2 |
Á£×ÓÔÚÇøÓò¢ñÖÐÔ˶¯µÄʱ¼äΪt1=
¦È1 |
2¦Ð |
½âµÃt1=
3¦Ðm |
4qB |
Á£×ÓÔÚÇøÓò¢òÖÐת¹ýµÄÔ²ÐĽÇΪ¦È2=
¦Ð |
2 |
Á£×ÓÔÚÇøÓò¢òÖÐÔ˶¯µÄʱ¼äΪt2=
¦È2 |
2¦Ð |
½âµÃt2=
¦Ðm |
2qB |
ËùÒÔt=t1+t2=
5¦Ðm |
4qB |
½«ËÙ¶Èv0=
2BqL |
m |
R1=L£¬R2=2L £¨14£©
Óɼ¸ºÎ¹ØϵµÃ
. |
OO2 |
. |
O2M |
Á£×ÓÀ뿪´Å³¡µÄºá×ø±êΪx=
. |
OO2 |
. |
O2M |
Á£×ÓÀ뿪´Å³¡µÄλÖÃ×ø±ê£¨4L£¬0£©£¨17£©
´ð£º£¨1£©Á£×ÓÔÚ¢ñºÍ¢òÁ½´Å³¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Ö®±ÈÊÇ1£º2£»
£¨2£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄ×Üʱ¼äÊÇ
5¦Ðm |
4qB |
µãÆÀ£º±¾ÌâÊÇÁ£×ÓÔڴų¡ÖÐÔÈËÙÔ²ÖÜÔ˶¯µÄÎÊÌ⣮Ôڴų¡ÖÐÔ²ÖÜÔ˶¯³£Ó÷½·¨ÊÇ»¹ì¼££¬Óɼ¸ºÎ֪ʶÇó°ë¾¶£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿