题目内容
【题目】如图所示,光滑轨道ABCD中BC为圆弧,圆弧半径为R,CD部分水平,末端D点与右端足够长的水平传送带无缝连接。传送带表面粗糙,以恒定速度v逆时针转动。现将一质量为m的小滑块从轨道上A点由静止释放,A到C的竖直高度为H,重力加速度g,则
A. 滑块在传动带上向右运动的最大距离与传送带速度v无关
B. 小滑块不可能返回A点
C. 若H=4R,滑块经过C点时对轨道压力大小为8mg
D. 若H=4R,皮带速度,则物块第一次在传送带上滑动过程中,由于摩擦而产生的内能为9mgR
【答案】AD
【解析】试题分析:由于传送带逆时针方向运动,可知滑块在向右运动的过程中一直做减速运动,当滑块恰好速度等于0时,向右运动的距离最大,该距离与传送带的速度无关.故A正确;滑块在传送带上先向右减速,然后在传送带上向左做加速运动,如果传送带的速度足够大,则滑块向左一直做加速运动时,由运动的对称性可知,滑块离开传送带的速度与滑上传送带的速度大小相等,可以达到A点.故B错误;若H=4R,滑块经过C点时的速度:,滑块受到的支持力与重力的合力提供向心力,所以:得:FN=9mg;根据牛顿第三定律可知,滑块对轨道压力大小为9mg.故C错误;选择向右为正方向,设滑块与传送带之间的动摩擦因数是μ,则滑块的加速度:a=μg
滑块的速度为-时,使用的时间:
滑块的位移:x1=vt+at2
代入数据得:
这段时间内传送带的位移:
滑块与传送带之间的相对位移:△x=x1x2=
由于摩擦而产生的内能为:Q=f△x=μmg=9mgR,故D正确.故选AD。
练习册系列答案
相关题目