题目内容

(12分)游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来(如图甲)。我们可以把它抽象成图乙所示的由曲面轨道和圆轨道平滑连接的模型(不计摩擦和空气阻力)。若质量为m的小球从曲面轨道上的P点由静止开始下滑,并且可以顺利通过半径为R的圆轨道的最高点A。已知P点与B点的高度差h=3R,求:
(1)小球通过最低点B时速度有多大?
(2)小球通过B点时受到圆轨道支持力有多大?
(3)若小球在运动中需要考虑摩擦和空气阻力,当小球从P点由静止开始下滑,且刚好通过最高点A,则小球从P点运动到A点的过程中克服摩擦和空气阻力所做的功为多少?
(1)
(2)F=7mg
(3)
(1)设小球通过B点的速度为v1,根据机械能守恒定律:
                                              (2分)
解得:(用R和h表示均可)             (2分)
(2)设小球在B点受到轨道的支持力为F,由牛顿第二定律:
                                           (2分)
解得:F="7mg                                              " (1分)
(3)在考虑摩擦和空气阻力情况下,当小球刚好通过A点时,由牛顿第二定律得
   故                                      (2分)
设小球从P点运动到A点的过程中,克服阻力做功为,由动能定理可得
                                             (2分)
所以                                           (1分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网