题目内容

(学有余力同学做,不计入总分)如图所示,设AB段是距水平传送带装置高为H=1.25m的光滑斜面,水平段BC使用水平传送带装置,BC长L=5m,与货物包的摩擦系数为μ=0.4,顺时针转动的速度为V=3m/s.设质量为m=1kg的小物块由静止开始从A点下滑,经过B点的拐角处无机械能损失.小物块随传送带运动到C点后水平抛出,恰好无碰撞的沿圆弧切线从D点进入竖直光滑圆孤轨道下滑.D、E为圆弧的两端点,其连线水平.已知圆弧半径R2=1.0m圆弧对应圆心角θ=106°,O为轨道的最低点.(g=10m/s2,sin37°=0.6,cos37°=0.8)试求:
(1)小物块在B点的速度.
(2)小物块在水平传送带BC上的运动时间.
(3)水平传送带上表面距地面的高度.
(4)小物块经过O点时对轨道的压力.
分析:(1)加速下滑过程中只有重力做功,对滑块沿斜面下滑过程运用动能定理列式求解;
(2)小滑块在传送带上先加速后匀速,先受力分析后根据牛顿第二定律求出加速过程的加速度,然后根据速度时间公式求加速时间,再根据平均速度公式求加速位移,再求匀速时间,最后得到总时间;
(3)对于平抛运动,根据速度方向先求出落地时的竖直分速度,然后根据速度位移公式求解出传送带上表面距离地面的高度差;
(4)先根据速度分解的平行四边形定则求出落地时速度,再对从D到O过程运用动能定理列式求出O点速度,最后运用牛顿第二定律求解对轨道最低点压力.
解答:解:(1)小物块由A运动B,由动能定理,mgh=
1
2
mv2

解得:vB=
2gH
=5m/s
即小物块在B点的速度为5m/s.
(2)由牛顿第二定律,得μmg=ma,解得:a=μg=4m/s2
水平传送带的速度为v0=3m/s
加速过程,由 v0=vB-at1,得:t1=
vB-v0
a
=0.5s
则匀速过程
L1=
vB+v0
2
t1
=2m
t2=
L-L1
v
=1s
故总时间t=t1+t2=1.5s
即小物块在水平传送带BC上的运动时间为1.5s.
(3)小物块从C到D做平抛运动,在D点有:
vy=v0tan
θ
2
=4m/s
v
2
y
=2gh,得h=
v
2
y
2g
=0.8m
故水平传送带上表面距地面的高度为0.8m.
(4)小物块在D点的速度大小为:vD=
v
2
C
+
v
2
y
=5m/s

对小物块从D点到O由动能定理,得:mgR(1-cos
θ
2
)=
1
2
mv2-
1
2
m
v
2
D

在O点由牛顿第二定律,得:FN-mg=m
v2
R

联立以上两式解得:FN=43N
由牛顿第三定律知对轨道的压力为:FN′=43N
即小物块经过O点时对轨道的压力为43N.
点评:本题关键是分析清楚物体的运动情况,然后根据动能定理、平抛运动知识、牛顿第二定律、向心力公式列式求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网