题目内容
(1)小物块在B点的速度.
(2)小物块在水平传送带BC上的运动时间.
(3)水平传送带上表面距地面的高度.
(4)小物块经过O点时对轨道的压力.
分析:(1)加速下滑过程中只有重力做功,对滑块沿斜面下滑过程运用动能定理列式求解;
(2)小滑块在传送带上先加速后匀速,先受力分析后根据牛顿第二定律求出加速过程的加速度,然后根据速度时间公式求加速时间,再根据平均速度公式求加速位移,再求匀速时间,最后得到总时间;
(3)对于平抛运动,根据速度方向先求出落地时的竖直分速度,然后根据速度位移公式求解出传送带上表面距离地面的高度差;
(4)先根据速度分解的平行四边形定则求出落地时速度,再对从D到O过程运用动能定理列式求出O点速度,最后运用牛顿第二定律求解对轨道最低点压力.
(2)小滑块在传送带上先加速后匀速,先受力分析后根据牛顿第二定律求出加速过程的加速度,然后根据速度时间公式求加速时间,再根据平均速度公式求加速位移,再求匀速时间,最后得到总时间;
(3)对于平抛运动,根据速度方向先求出落地时的竖直分速度,然后根据速度位移公式求解出传送带上表面距离地面的高度差;
(4)先根据速度分解的平行四边形定则求出落地时速度,再对从D到O过程运用动能定理列式求出O点速度,最后运用牛顿第二定律求解对轨道最低点压力.
解答:解:(1)小物块由A运动B,由动能定理,mgh=
mv2
解得:vB=
=5m/s
即小物块在B点的速度为5m/s.
(2)由牛顿第二定律,得μmg=ma,解得:a=μg=4m/s2
水平传送带的速度为v0=3m/s
加速过程,由 v0=vB-at1,得:t1=
=0.5s
则匀速过程
L1=
t1=2m
t2=
=1s
故总时间t=t1+t2=1.5s
即小物块在水平传送带BC上的运动时间为1.5s.
(3)小物块从C到D做平抛运动,在D点有:
vy=v0tan
=4m/s
由
=2gh,得h=
=0.8m
故水平传送带上表面距地面的高度为0.8m.
(4)小物块在D点的速度大小为:vD=
=5m/s
对小物块从D点到O由动能定理,得:mgR(1-cos
)=
mv2-
m
在O点由牛顿第二定律,得:FN-mg=m
联立以上两式解得:FN=43N
由牛顿第三定律知对轨道的压力为:FN′=43N
即小物块经过O点时对轨道的压力为43N.
| 1 |
| 2 |
解得:vB=
| 2gH |
即小物块在B点的速度为5m/s.
(2)由牛顿第二定律,得μmg=ma,解得:a=μg=4m/s2
水平传送带的速度为v0=3m/s
加速过程,由 v0=vB-at1,得:t1=
| vB-v0 |
| a |
则匀速过程
L1=
| vB+v0 |
| 2 |
t2=
| L-L1 |
| v |
故总时间t=t1+t2=1.5s
即小物块在水平传送带BC上的运动时间为1.5s.
(3)小物块从C到D做平抛运动,在D点有:
vy=v0tan
| θ |
| 2 |
由
| v | 2 y |
| ||
| 2g |
故水平传送带上表面距地面的高度为0.8m.
(4)小物块在D点的速度大小为:vD=
|
对小物块从D点到O由动能定理,得:mgR(1-cos
| θ |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| v | 2 D |
在O点由牛顿第二定律,得:FN-mg=m
| v2 |
| R |
联立以上两式解得:FN=43N
由牛顿第三定律知对轨道的压力为:FN′=43N
即小物块经过O点时对轨道的压力为43N.
点评:本题关键是分析清楚物体的运动情况,然后根据动能定理、平抛运动知识、牛顿第二定律、向心力公式列式求解.
练习册系列答案
相关题目