题目内容

(2008?天津)光滑水平面上放着质量mA=lkg的物块A与质量mB=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能EP=49J.在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示.放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B恰能到达最高点C.取g=l0m/s2,求
(1)绳拉断后B的速度VB的大小;
(2)绳拉断过程绳对B的冲量I的大小;
(3)绳拉断过程绳对A所做的功W.
分析:(1)对于恰能到达圆轨道的最高点,找出临界条件,列出相应的等式.
(2)清楚B的运动过程,选择某一过程应用动能定理研究,解出某一状态的速度.
(3)在B向右运动的过程中,弹簧的弹性势能转化给B的动能,根据动量定理求出冲量.
(4)应用动量守恒定律和动能定理求解绳拉断的过程中所做的功.
解答:解:(1)设B在绳被拉断后瞬时的速率为vB,到达C点的速率为vC
根据B恰能到达最高点C有:
  F=mBg=mB
v
2
c
R
-----①
对绳断后到B运动到最高点C这一过程应用动能定理:
-2mBgR=
1
2
mBvc2-
1
2
mBvB2---------②
 由①②解得:vB=5m/s.
  (2)设弹簧恢复到自然长度时B的速率为v1,取向右为正方向,
  弹簧的弹性势能转化给B的动能,Ep=
1
2
mBv12------③
    根据动量定理有:I=mBvB-mBv1 -----------------④
   由③④解得:I=-4 N?s,其大小为4N?s
  (3)设绳断后A的速率为vA,取向右为正方向,
  根据动量守恒定律有:mBv1=mBvB+mAvA-----⑤
 根据动能定理有:W=
1
2
mAvA2------⑥
 由⑤⑥解得:W=8J
答:(1)绳拉断后B的速度VB的大小是5m/s;
(2)绳拉断过程绳对B的冲量I的大小是4N?s;
(3)绳拉断过程绳对A所做的功W是8J.
点评:该题考查了多个知识点.我们首先要清楚物体的运动过程,要从题目中已知条件出发去求解问题.
其中应用动能定理时必须清楚研究过程和过程中各力做的功.应用动量定理和动量守恒定律时要规定正方向,要注意矢量的问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网