ÌâÄ¿ÄÚÈÝ
13£®ÈçͼËùʾ£¬¾²Ö¹ÓÚA´¦µÄÁ£×Ó£¬¾µçѹΪUµÄ¼ÓËٵ糡¼ÓËÙºó£¬ÑØͼÖÐÔ²»¡ÐéÏßͨ¹ý¾²µç·ÖÎöÆ÷£¬Á£×ÓÔÚ¾²µç·ÖÎöÆ÷ÖÐ×öÔ²ÖÜÔ˶¯£®´ÓPµã´¹Ö±CN½øÈë¾ØÐÎÇøÓòµÄÔÈÇ¿µç³¡£¬µç³¡·½ÏòˮƽÏò×ó£¬Á£×ÓÇ¡ÄÜ´òÔÚQµã£®¾²µç·ÖÎöÆ÷ͨµÀÊǰ뾶ΪRµÄ$\frac{1}{4}$Ô²»¡£¬ÄÚÓоùÔÈ·øÏò·Ö²¼µÄµç³¡£¬·½ÏòÈçͼËùʾ£»Á£×ÓÖÊÁ¿Îªm¡¢µçºÉÁ¿Îªq£»QN=d£¬PN=2d£¬Á£×ÓÖØÁ¦²»¼Æ£®Ç󣺣¨1£©Á£×ӵĵçÐÔ£»
£¨2£©¾²µç·ÖÎöÆ÷ÖÐÁ£×ÓÔ˶¯¹ì¼£´¦µç³¡Ç¿¶ÈEµÄ´óС£»
£¨3£©P¡¢QÁ½µã¼äµÄµçѹU1£®
·ÖÎö £¨1£©¸ù¾ÝÁ£×ÓÔÚ¾²µç·ÖÎöÆ÷µÄÔ˶¯ÅжϵçÐÔ
£¨2£©ÔÚ¼ÓËٵ糡ÖÐÓɶ¯Äܶ¨ÀíÇóµÄËٶȣ¬ÔÚ¾²µç·ÖÎöÆ÷Öе糡Á¦ÌṩÏòÐÄÁ¦
£¨3£©ÔÚƫתµç³¡ÖÐÁ£×Ó×öÀàƽÅ×Ô˶¯£¬¸ù¾ÝÊúÖ±·½ÏòÔÈËÙ£¬Ë®Æ½·½ÏòÔȼÓËÙ¼´¿ÉÇóµÃ
½â´ð ½â£º£¨1£©Á£×ÓÔÚ¾²µç·ÖÎöÆ÷ÖÐ×öÔ²ÖÜÔ˶¯£¬¸ù¾Ýµç³¡Á¦Ìṩ×öÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦¿ÉÖª£¬Á£×Ó´øÕýµç£»
£¨2£©ÔÚ¼ÓËٵ糡ÖУ¬Óɶ¯Äܶ¨Àí¿ÉµÃ£º$qU=\frac{1}{2}m{v}^{2}$
ÔÚ¾²µç·ÖÎöÆ÷ÖÐÓУºqE=$\frac{m{v}^{2}}{R}$
ÁªÁ¢½âµÃ£ºE=$\frac{2U}{R}$
£¨3£©½øÈëƫתµç³¡ÖÐÊúÖ±·½ÏòÔÈËÙÔ˶¯£¬Ë®Æ½·½ÏòÔȼÓËÙÔ˶¯£¬
d=vt
2d=$\frac{1}{2}•\frac{q{U}_{1}}{2md}{t}^{2}$
ÁªÁ¢½âµÃ£ºU1=16U
´ð£º£¨1£©Á£×Ó´øÕýµç
£¨2£©¾²µç·ÖÎöÆ÷ÖÐÁ£×ÓÔ˶¯¹ì¼£´¦µç³¡Ç¿¶ÈEµÄ´óСΪ$\frac{2U}{R}$
£¨3£©P¡¢QÁ½µã¼äµÄµçѹU1Ϊ16U
µãÆÀ ¶ÔÓÚ´øµçÁ£×ÓÔڵ糡ÖмÓËÙ¹ý³Ì£¬ÍùÍùÔËÓö¯Äܶ¨ÀíÑо¿¼ÓËÙµçѹÓëËٶȵĹØϵ£»¶ÔÓڵ糡ÖÐƫתÎÊÌ⣬Ô˶¯µÄ·Ö½âÊdz£Ó÷½·¨£®
A£® | СÇòÔÚB µãµÄµçÊÆÄÜÒ»¶¨´óÓÚСÇòÔÚA µãµÄµçÊÆÄÜ | |
B£® | A¡¢BÁ½µãµÄµçÊƲîÒ»¶¨Îª $\frac{mgL}{q}$ | |
C£® | Èôµç³¡ÊÇÔÈÇ¿µç³¡£¬Ôò¸Ãµç³¡µÄ³¡Ç¿µÄ×îСֵһ¶¨ÊÇ $\frac{mgsin¦È}{q}$ | |
D£® | Ô˶¯¹ý³ÌÖÐСÇòËùÊÜÖØÁ¦Óëµç³¡Á¦±ØÏàµÈ |
A£® | Ò»Ö±Ôö´ó | B£® | Ò»Ö±¼õС | C£® | ÏÈÔö´óºó¼õС | D£® | ÏȼõСºóÔö´ó |
A£® | ËٶȼõС£¬ÖÜÆÚÔö´ó£¬¶¯ÄܼõС | B£® | ËٶȼõС£¬ÖÜÆÚ¼õС£¬¶¯ÄܼõС | ||
C£® | ËÙ¶ÈÔö´ó£¬ÖÜÆÚÔö´ó£¬¶¯ÄÜÔö´ó | D£® | ËÙ¶ÈÔö´ó£¬ÖÜÆÚ¼õС£¬¶¯ÄÜÔö´ó |
A£® | $\frac{30¦Ð}{{G{a^2}b}}$ | B£® | $\frac{3¦Ð}{{G{a^2}{b^2}}}$ | C£® | $\frac{30¦Ð}{{G{a^2}{{£¨1-b£©}^2}}}$ | D£® | $\frac{3¦Ð}{{G{a^2}{{£¨1-b£©}^{\;}}}}$ |