题目内容
如图所示,人重600N,木块重400N,人与木块、木块与水平地面间的动摩擦因数均为0.2,现该人用力拉绳,使他与木块一起向右匀速运动,则( )
A、人拉绳的力是200N | B、人拉绳的力是100N | C、人脚对木块的摩擦力向右 | D、人脚与木块间的摩擦力为120N |
分析:先后对人和木块整体、人受力分析,然后根据共点力平衡条件列式求解.
解答:解:A、对人和木块整体受力分析,受重力(M+m)g、地面支持力N、绳子的拉力2F,向后的滑动摩擦力f,根据共点力平衡条件,有:
2F-f=0
N-(M+m)g=0
其中f=μN
解得f=200N
F=100N
故A错误,B正确;
C、对人受力分析,受重力、木块的支持力、绳子的拉力F、向左的静摩擦力,根据共点力平衡条件,绳子的拉力与静摩擦力平衡等于100N,故由牛顿第三定律知,人的脚给木块摩擦力向右,大小为100N,故C正确,D错误;
故选:BC.
2F-f=0
N-(M+m)g=0
其中f=μN
解得f=200N
F=100N
故A错误,B正确;
C、对人受力分析,受重力、木块的支持力、绳子的拉力F、向左的静摩擦力,根据共点力平衡条件,绳子的拉力与静摩擦力平衡等于100N,故由牛顿第三定律知,人的脚给木块摩擦力向右,大小为100N,故C正确,D错误;
故选:BC.
点评:本题关键先后对人和木块整体、人受力分析,然后根据共点力平衡条件进行分析计算.
练习册系列答案
相关题目