题目内容

5.如图a所示为“研究加速度与质量关系”的实验装置,小车和车上砝码的总质量为M,保持吊盘和盘中物块的总质量m不变,主要实验步骤如下:
a.平衡摩擦力:先不放小吊盘,在长木板不带定滑轮的一端下面垫薄木块,并反复移动其位置,直到用手轻拨小车,打点计时器能在纸带上打出一系列均匀的点,关闭电源.
b.吊上小吊盘,放入适当的物块,将小车停在打点计时器附近,接通电源,后释放小车,打点计时器就在纸带上打下一系列的点,关闭电源.
c.改变小车中砝码的质量,重复步骤b.
d.在每条纸带上清晰的部分,每5个间隔标注一个计数点.测量相邻计数点的间距s1,s2,s3,???.求出相应的加速度a.
完成下列填空:
①如图给出的是实验中获取的一条纸带的一部分,A、B、C、D、E 是计数点,计数点间的距离如图所示,相邻计数点间时间间隔0.1s,根据图中数据可得,打下C点时小车的瞬时速度大小为0.48m/s,运动过程中小车的加速度大小为0.79m/s2(结果保留2位有效数字).

②设图b中的图线斜率为k,则吊盘和盘中物块的总质量m=$\frac{1}{kg}$.(用题中物理量的符号表示,重力加速度为g)
③甲同学以$\frac{1}{M}$为横坐标,a为纵坐标,在坐标纸上作出a-$\frac{1}{M}$的图线的示意图如图c所示,图线上部弯曲的原因是:没有满足M>>m.

分析 ①由平均速度表示中间时刻的瞬时速度,可得C点的瞬时速度.由逐差法可得加速度.
②当M>>m,吊盘和盘中物块的重力mg等于小车受到的拉力,由牛顿第二定律可得m;
③只有当M>>m,才能认为吊盘和盘中物块的重力mg等于小车受到的拉力.

解答 解:
①由平均速度表示中间时刻的瞬时速度,可得C点的瞬时速度为:${v}_{C}=\frac{{x}_{BD}}{2T}=\frac{0.044+0.052}{0.2}=0.48m/s$,
由逐差法可得:$a=\frac{{x}_{CE}-{x}_{AC}}{4{T}^{2}}=\frac{0.052+0.0598-0.0440-0.0362}{0.04}$=0.79m/s2
②由牛顿第二定律可得:mg=Ma,解得:$m=\frac{Ma}{g}$,由图象斜率:$k=\frac{\frac{1}{a}}{M}=\frac{1}{aM}$,可得:$m=\frac{1}{kg}$.
③只有当M>>m,才能认为吊盘和盘中物块的重力mg等于小车受到的拉力,这样$a-\frac{1}{M}$的图线才会是直线,b图之所以出现弯曲是因为没有满足这一条件.
故答案为:①0.48;0.79;②$\frac{1}{kg}$;③没有满足M>>m.

点评 本题考查了打点计时器的应用以及根据纸带求物体运动的速度、加速度等问题,要熟练掌握从纸带上获取小车速度、加速度的方法,重点在于该实验的条件,要求M>>m,其次是对牛顿第二定律的灵活应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网