题目内容

如图, 上下两个转盘可绕穿过它们中心的竖直轴水平转动,且两盘角速度相同, 其中上盘的半径为d。一根不计重力的轻绳两端分别系有A、B两物体,质量分别为2m和m。将轻绳跨过固定在上转盘边缘的光滑挂钩,挂钩与B物体间的一段绳子长为L。当两个转盘以角速度ω匀速转动时,两段轻绳与转轴在同一竖直平面内,一段轻绳与竖直方向的夹角为θ,另一段轻绳始终沿竖直方向。(g=10m/s²,sin53°= ,cos53°=

(1)求转盘转动的角速度ω与夹角θ的关系?

(2)当转盘的角速度缓慢增加的过程中,夹角θ如何变化?A物体受到的摩擦力如何变化?试分析。

(3)已知B物体端的绳长L=4.5m,上盘半径d=0.4m。当角速度增加到某一数值时,B物体端的轻绳与竖直方向的夹角为53°,此时A物体恰好开始滑动,求A物体与下盘之间的动摩擦因数µ ?(最大静摩擦力等于滑动摩擦力)

 

 

 

【答案】

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网