ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾΪ¡°ÑéÖ¤¶¯Á¿Êغ㶨ÂÉ¡±µÄʵÑé×°Öã®

£¨1£©ÏÂÁÐ˵·¨ÖзûºÏ±¾ÊµÑéÒªÇóµÄÊÇ______£®£¨Ñ¡ÌîÑ¡ÏîÇ°ÃæµÄ×Öĸ£©
A£®ÈëÉäÇò±È°ÐÇòÖÊÁ¿´ó»òÕßС¾ù¿É£¬µ«¶þÕßµÄÖ±¾¶±ØÐëÏàͬ
B£®ÔÚͬһ×éʵÑéµÄ²»Í¬ÅöײÖУ¬Ã¿´ÎÈëÉäÇò±ØÐë´Óͬһ¸ß¶ÈÓɾ²Ö¹ÊÍ·Å
C£®°²×°¹ìµÀʱ£¬¹ìµÀÄ©¶Ë±ØÐëˮƽ
D£®ÐèҪʹÓõIJâÁ¿ÒÇÆ÷ÓÐÌìÆ½¡¢¿Ì¶È³ßºÍÃë±í
£¨2£©ÊµÑéÖмǼÁ˹ìµÀÄ©¶ËÔڼǼֽÉϵÄÊúֱͶӰΪOµã£¬¾¶à´ÎÊÍ·ÅÈëÉäÇò£¬ÔڼǼֽÉÏÕÒµ½ÁËÁ½Çòƽ¾ùÂäµãλÖÃΪM¡¢P¡¢N£¬²¢²âµÃËüÃǵ½OµãµÄ¾àÀë·Ö±ðΪOM¡¢OPºÍON£®ÒÑÖªÈëÉäÇòµÄÖÊÁ¿Îªm1£¬°ÐÇòµÄÖÊÁ¿Îªm2£¬Èç¹û²âµÃm1?
+m2?
½üËÆµÈÓÚ______£¬ÔòÈÏΪ³É¹¦ÑéÖ¤ÁËÅöײÖе͝Á¿Êغ㣮Èô²âµÃ
+
½üËÆµÈÓÚ______£¬ÔòÈÏΪÔÚÅöײǰºóÄÜÁ¿Êغ㣮
£¨1£©ÏÂÁÐ˵·¨ÖзûºÏ±¾ÊµÑéÒªÇóµÄÊÇ______£®£¨Ñ¡ÌîÑ¡ÏîÇ°ÃæµÄ×Öĸ£©
A£®ÈëÉäÇò±È°ÐÇòÖÊÁ¿´ó»òÕßС¾ù¿É£¬µ«¶þÕßµÄÖ±¾¶±ØÐëÏàͬ
B£®ÔÚͬһ×éʵÑéµÄ²»Í¬ÅöײÖУ¬Ã¿´ÎÈëÉäÇò±ØÐë´Óͬһ¸ß¶ÈÓɾ²Ö¹ÊÍ·Å
C£®°²×°¹ìµÀʱ£¬¹ìµÀÄ©¶Ë±ØÐëˮƽ
D£®ÐèҪʹÓõIJâÁ¿ÒÇÆ÷ÓÐÌìÆ½¡¢¿Ì¶È³ßºÍÃë±í
£¨2£©ÊµÑéÖмǼÁ˹ìµÀÄ©¶ËÔڼǼֽÉϵÄÊúֱͶӰΪOµã£¬¾¶à´ÎÊÍ·ÅÈëÉäÇò£¬ÔڼǼֽÉÏÕÒµ½ÁËÁ½Çòƽ¾ùÂäµãλÖÃΪM¡¢P¡¢N£¬²¢²âµÃËüÃǵ½OµãµÄ¾àÀë·Ö±ðΪOM¡¢OPºÍON£®ÒÑÖªÈëÉäÇòµÄÖÊÁ¿Îªm1£¬°ÐÇòµÄÖÊÁ¿Îªm2£¬Èç¹û²âµÃm1?
| . |
| OM |
| . |
| ON |
| . |
| OM |
| . |
| OP |
£¨1£©A¡¢ÔÚСÇòÅöײ¹ý³ÌÖÐˮƽ·½Ïò¶¯Á¿Êغ㶨ÂɹÊÓÐm1v0=m1v1+m2v2
ÔÚÅöײ¹ý³ÌÖж¯ÄÜÊØºã¹ÊÓÐ
m1v02=
m1v12+
m2v22
½âµÃv1=
v0
ÒªÅöºóÈëÉäСÇòµÄËÙ¶Èv1£¾0£¬¼´m1-m2£¾0£¬¼´ÈëÉäÇòÒª±È°ÐÇòÖÊÁ¿´ó£¬
Òª·¢Éúˮƽ·½ÏòµÄ¶ÔÐÄÅöײ£¬¹Ê¶þÕßµÄÖ±¾¶±ØÐëÏàͬ
¹Ê´ð°¸A´íÎó£®
B¡¢ÔÚͬһ×éµÄʵÑéÖÐÒª±£Ö¤ÈëÉäÇòºÍ°ÐÇòÿ´ÎƽÅ×µÄËٶȶ¼Ïàͬ£¬¹Êÿ´ÎÈëÉäÇò±ØÐë´Óͬһ¸ß¶ÈÓɾ²Ö¹ÊÍ·Å£®¹ÊBÕýÈ·£®
C¡¢Òª±£Ö¤Ã¿´ÎСÇò¶¼×öƽÅ×Ô˶¯£¬Ôò¹ìµÀµÄÄ©¶Ë±ØÐëˮƽ£®¹ÊCÕýÈ·£®
D¡¢±¾ÊµÑé²»ÐèÒª²âСÇòƽÅ×Ô˶¯µÄËÙ¶È£¬¹Ê²»ÐèÒª²âÔ˶¯µÄʱ¼ä£¬ËùÒÔ²»ÐèÒªÃë±í£®¹ÊD´íÎó£®
¹ÊÑ¡BC£®
£¨2£©ÔÚСÇòÅöײ¹ý³ÌÖÐˮƽ·½Ïò¶¯Á¿Êغ㶨ÂɹÊÓÐm1v0=m1v1+m2v2
¼´ÓÐm1v0t=m1v1t+m2v2t
¹ÊÓÐm1
=m1
+m2
¹Ê´ð°¸Îªm1
ÈôÔÚÅöײ¹ý³ÌÖж¯ÄÜÊØºãÔòÓÐ
m1v02=
m1v12+
m2v22
¼´
m1
2=
m1
2+
m2
2
ÓÖÓÉÓÚm1
=m1
+m2
ÁªÁ¢ÒÔÉÏÁ½Ê½¿ÉµÃ
+
=
¹Ê´ð°¸Îª
¹Ê±¾ÌâµÄ´ð°¸Îª£º£¨1£©BC
£¨2£©m1
£¬
£®
ÔÚÅöײ¹ý³ÌÖж¯ÄÜÊØºã¹ÊÓÐ
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
½âµÃv1=
| m1-m2 |
| m1+m2 |
ÒªÅöºóÈëÉäСÇòµÄËÙ¶Èv1£¾0£¬¼´m1-m2£¾0£¬¼´ÈëÉäÇòÒª±È°ÐÇòÖÊÁ¿´ó£¬
Òª·¢Éúˮƽ·½ÏòµÄ¶ÔÐÄÅöײ£¬¹Ê¶þÕßµÄÖ±¾¶±ØÐëÏàͬ
¹Ê´ð°¸A´íÎó£®
B¡¢ÔÚͬһ×éµÄʵÑéÖÐÒª±£Ö¤ÈëÉäÇòºÍ°ÐÇòÿ´ÎƽÅ×µÄËٶȶ¼Ïàͬ£¬¹Êÿ´ÎÈëÉäÇò±ØÐë´Óͬһ¸ß¶ÈÓɾ²Ö¹ÊÍ·Å£®¹ÊBÕýÈ·£®
C¡¢Òª±£Ö¤Ã¿´ÎСÇò¶¼×öƽÅ×Ô˶¯£¬Ôò¹ìµÀµÄÄ©¶Ë±ØÐëˮƽ£®¹ÊCÕýÈ·£®
D¡¢±¾ÊµÑé²»ÐèÒª²âСÇòƽÅ×Ô˶¯µÄËÙ¶È£¬¹Ê²»ÐèÒª²âÔ˶¯µÄʱ¼ä£¬ËùÒÔ²»ÐèÒªÃë±í£®¹ÊD´íÎó£®
¹ÊÑ¡BC£®
£¨2£©ÔÚСÇòÅöײ¹ý³ÌÖÐˮƽ·½Ïò¶¯Á¿Êغ㶨ÂɹÊÓÐm1v0=m1v1+m2v2
¼´ÓÐm1v0t=m1v1t+m2v2t
¹ÊÓÐm1
| . |
| OP |
| . |
| OM |
| . |
| ON |
¹Ê´ð°¸Îªm1
| . |
| OP |
ÈôÔÚÅöײ¹ý³ÌÖж¯ÄÜÊØºãÔòÓÐ
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
¼´
| 1 |
| 2 |
| . |
| OP |
| 1 |
| 2 |
| . |
| OM |
| 1 |
| 2 |
| . |
| ON |
ÓÖÓÉÓÚm1
| . |
| OP |
| . |
| OM |
| . |
| ON |
ÁªÁ¢ÒÔÉÏÁ½Ê½¿ÉµÃ
| . |
| OM |
| . |
| OP |
| . |
| ON |
¹Ê´ð°¸Îª
| . |
| ON |
¹Ê±¾ÌâµÄ´ð°¸Îª£º£¨1£©BC
£¨2£©m1
| . |
| OP |
| . |
| ON |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿