题目内容

如图所示,物体沿斜面向上运动,经过A点时具有动能100J,当它向上滑行到B点时,动能减少了80J,机械能损失了20J,则物体回到A点时的动能为(  )
分析:物体从开始到经过斜面上某一点时,受重力、支持力和摩擦力,总功等于动能增加量,机械能减小量等于克服摩擦力做的功,根据功能关系列式;再对从最高点到底端过程运用动能定理列式求解.
解答:解:物体从开始到经过斜面上某一点时,受重力、支持力和摩擦力,
根据动能定理,有
-mg?lABsinθ-f?lAB=EKB-EKA=-80J  
机械能减小量等于克服摩擦力做的功,故
f?lAB=EB-EA=20J     
解得f=
1
3
mgsinθ.
当该物体经过斜面上某一点时,动能减少了80J,机械能减少了20J,所以当物体到达最高点时动能减少了100J,机械能减少了25J,
所以物体上升过程中克服摩擦力做功是25J,全过程摩擦力做功W=-50J 
从出发到返回底端,重力不做功,设回到出发点的动能为EK′,由动能定理可得
W=EK′-EK 
得:EK′=50J 
故选B.
点评:功能关系有多种表现形式:
合力的功(总功)等于动能增加量;
重力做功等于重力势能的减小量;
除重力外其余力做的功等于机械能的增加量.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网