题目内容
如图所示的直角坐标系中,在直线x=-2l0到y轴区域内存在着两个大小相等、方向相反的有界匀强电场,其中x轴上方的电场方向沿y轴负方向,x轴下方的电场方向沿y轴正方向。在电场左边界上A(-2l0,-l0)到C(-2l0,0)区域内,连续分布着电量为+q、质量为m的粒子。从某时刻起由A点到C点间的粒子,依次连续以相同的速度v0沿x轴正方向射入电场。若从A点射入的粒子,恰好从y轴上的A′(0,l0)沿x轴正方向射出电场,其轨迹如图。不计粒子的重力及它们间的相互作用。
⑴求匀强电场的电场强度E;
⑵求在AC间还有哪些位置的粒子,通过电场后也能沿x轴正方向运动?
⑶若以直线x=2l0上的某点为圆心的圆形区域内,分布着垂直于xOy平面向里的匀强磁场,使沿x轴正方向射出电场的粒子,经磁场偏转后,都能通过直线x=2l0与圆形磁场边界的一个交点处,而便于被收集,则磁场区域的最小半径是多大?相应的磁感应强度B是多大?
解析:⑴ 从A点射出的粒子,由A到A′的运动时间为T,根据运动轨迹和对称性可得
x轴方向
y轴方向
得:
⑵ 设到C点距离为△y处射出的粒子通过电场后也沿x轴正方向,粒子第一次达x轴用时△t,水平位移为△x,则
若满足,则从电场射出时的速度方向也将沿x轴正方向
解之得:
即AC间y坐标为 (n = 1,2,3,……)
⑶ 当n=1时,粒子射出的坐标为
当n=2时,粒子射出的坐标为
当n≥3时,沿x轴正方向射出的粒子分布在y1到y2之间(如图)y1到y2之间的距离为
L= y1-y2= 则磁场的最小半径为
若使粒子经磁场偏转后汇聚于一点,粒子的运动半径与磁场圆的半径相等(如图),(轨迹圆与磁场圆相交,四边形PO1QO2为棱形) 由 得: