ÌâÄ¿ÄÚÈÝ
18£®ÔÚ¡°Ì½¾¿ºãÁ¦×ö¹¦Ó붯Äܸıä¼äµÄ¹Øϵ¡±ÊµÑéÖУ¬²ÉÓÃͼ1ʾװÖõÄʵÑé·½°¸£¬ÊµÑéʱ£º£¨1£©ÈôÓÃÉ°ºÍСͰµÄ×ÜÖØÁ¦±íʾС³µÊܵ½µÄºÏÁ¦£¬ÎªÁ˼õÉÙÕâÖÖ×ö·¨´øÀ´µÄʵÑéÎó²î£¬±ØÐ룺¢Ùʹ³¤Ä¾°å×ó¶Ȩ̈Æð-¸öºÏÊʵĽǶȣ¬ÒÔƽºâĦ²ÁÁ¦£»¢ÚÂú×ãÌõ¼þ£¬Ð¡³µÖÊÁ¿Ô¶´óÓÚÉ°ºÍСͰµÄ×ÜÖÊÁ¿£¨Ñ¡Ìî¡°Ô¶´óÓÚ¡±¡¢¡°Ô¶Ð¡ÓÚ¡±¡¢¡°µÈÓÚ¡±£©£»¢ÛʹÀ¶¯Ð¡³µµÄϸÏߣ¨Ð¡³µ-»¬ÂֶΣ©Ó볤ľ°åƽÐУ®
£¨2£©Èçͼ2ËùʾÊÇij´ÎʵÑéÖеõ½µÄÒ»ÌõÖ½´ø£¬ÆäÖÐA¡¢B¡¢C¡¢D¡¢E¡¢FÊǼÆÊýµã£¬ÏàÁÚ¼ÆÊýµã¼äµÄʱ¼ä¼ä¸ôΪT£¬¾àÀëÈçͼËùʾ£¬Ôò´òCµãʱС³µµÄËÙ¶Èvc±í´ïʽΪ£¨ÓÃÌâÖÐËù¸øÎïÀíÁ¿±íʾ£©${v}_{C}=\frac{{s}_{2}+{s}_{3}}{2T}$£»ÒªÑéÖ¤ºÏÍâÁ¦×ö¹¦Ó붯Äܱ仯¼äµÄ¹Øϵ£¬³ýÁËÒª²âÁ¿É°ºÍСɰͰµÄ×ÜÖØÁ¦¡¢²âÁ¿Ð¡³µµÄλÒÆ¡¢ËÙ¶ÈÍ⣬»¹Òª²â³öµÄÎïÀíÁ¿ÓÐС³µµÄÖÊÁ¿£®
·ÖÎö 1£®Ð¡³µÔÚˮƽ·½ÏòÉÏÊÜÉþµÄÀÁ¦ºÍĦ²ÁÁ¦£¬ÏëÓù³ÂëµÄÖØÁ¦±íʾС³µÊܵ½µÄºÏÍâÁ¦£¬Ê×ÏÈÐèҪƽºâĦ²ÁÁ¦£»Æä´ÎÒªÏëÓù³ÂëµÄÖØÁ¦±íʾС³µÊܵ½µÄºÏÍâÁ¦£¬±ØÐëÒªÂú×ã¹³ÂëµÄÖÊÁ¿Ô¶Ð¡ÓÚС³µµÄ×ÜÖÊÁ¿£®
2£®ÎªÁËʹ¡°É³ºÍɳͰµÄ×ÜÖØÁ¦±íʾС³µÊܵ½µÄºÏÍâÁ¦¡±Ëù²ÉÈ¡´ëÊ©ÓëÑé֤ţ¶ÙµÚ¶þ¶¨ÂÉÀàËÆ£»¸ù¾Ý¶¯Äܶ¨ÀíµÄ±í´ïʽ£¬¼´¿ÉÃ÷È·Ëù²âÎïÀíÁ¿£®
½â´ð ½â£º£¨1£©ÈôÓÃÉ°ºÍСͰµÄ×ÜÖØÁ¦±íʾС³µÊܵ½µÄºÏÁ¦£¬ÎªÁ˼õÉÙÕâÖÖ×ö·¨´øÀ´µÄʵÑéÎó²î£¬±ØÐ룺
¢Ùʹ³¤Ä¾°å×ó¶Ȩ̈Æð-¸öºÏÊʵĽǶȣ¬ÒÔƽºâĦ²ÁÁ¦£¬ÒÔ±£Ö¤ºÏÍâÁ¦µÈÓÚÉþ×ÓµÄÀÁ¦£»
¢ÚÂú×ãÌõ¼þ£¬Ð¡³µÖÊÁ¿ Ô¶´óÓÚÉ°ºÍСͰµÄ×ÜÖÊÁ¿£¬ÒÔ±£Ö¤Éþ×ÓµÄÀÁ¦µÈÓÚɳÓëСͰµÄ×ÜÖØÁ¦£»
¢ÛʹÀ¶¯Ð¡³µµÄϸÏߣ¨Ð¡³µ---»¬ÂֶΣ©Ó볤ľ°åƽÐУ¬ÒÔ±£Ö¤ºÏÍâÁ¦µÈÓÚÉþ×ÓµÄÀÁ¦£®
£¨2£©¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÌص㣬CµãµÄËٶȵÈÓÚBDÖ®¼äµÄƽ¾ùËٶȣ¬ËùÒÔ£º${v}_{C}=\frac{{s}_{2}+{s}_{3}}{2T}$
ƽºâĦ²ÁÁ¦ºó£¬Ð¡³µÊܵ½µÄºÏÁ¦Îªmg£¬ºÏÍâÁ¦µÄ¹¦µÈÓÚ¶¯Äܵı仯£¬Òò´ËÐèÒªÑéÖ¤µÄ±í´ïʽΪ£ºmgs=$\frac{1}{2}$mvB2-$\frac{1}{2}$mvA2£»
¹Ê»¹ÐèÒª²â³öµÄÎïÀíÁ¿ÊÇС³µµÄÖÊÁ¿£®
¹Ê´ð°¸Îª£º£¨1£©Æ½ºâĦ²ÁÁ¦ ¢ÚÔ¶´óÓÚ ¢ÛƽÐÐ
£¨2£©${v}_{C}=\frac{{s}_{2}+{s}_{3}}{2T}$£»Ð¡³µÖÊÁ¿
µãÆÀ ¡°Ì½¾¿ºãÁ¦×ö¹¦Ó붯ÄܸıäµÄ¹Øϵ¡±Ó롰̽¾¿¼ÓËÙ¶ÈÓëÁ¦¡¢ÖÊÁ¿µÄ¹Øϵ¡±ÓкܶàÀàËÆÖ®´¦£¬ÔÚƽʱѧϰÖÐÒªÉÆÓÚ×ܽᡢ±È½Ï£¬Ìá¸ß¶ÔʵÑéµÄÀí½âÄÜÁ¦£®
A£® | ËÙ¶ÈÖð½¥¼õСµÄ±ä¼ÓËÙÔ˶¯ | B£® | ËÙ¶ÈÖð½¥Ôö´óµÄ±ä¼ÓËÙÔ˶¯ | ||
C£® | Á¦¼õСΪÁãʱ£¬ËÙ¶ÈÒ²¼õСΪÁã | D£® | Á¦¼õСΪÁãʱ£¬Ëٶȴﵽ×î´óÖµ |
A£® | F=8 N | B£® | F=9 N | C£® | f=3 N | D£® | f=6 N |
A£® | ½ÇËٶȴóСһ¶¨¸Ä±ä | B£® | ¼ÓËٶȴóСһ¶¨¸Ä±ä | ||
C£® | Ëٶȷ½ÏòÒ»¶¨¸Ä±ä | D£® | ºÏÍâÁ¦´óСһ¶¨¸Ä±ä |
A£® | Á½ÇòµÄÏòÐÄÁ¦´óС֮±È£º${F_A}£º{F_B}=\sqrt{3}£º3$ | |
B£® | Á½ÇòµÄÏßËٶȴóС֮±È£º${v_A}£º{v_B}=3£º\sqrt{3}$ | |
C£® | ׶Ãæ¶ÔÁ½ÇòµÄÖ§³ÖÁ¦´óС֮±È£º${N_A}£º{N_B}=\sqrt{2}£º\sqrt{3}$ | |
D£® | Á½ÇòµÄÏòÐļÓËٶȴóС´óС֮±ÈΪ£º${a_A}£º{a_B}=3£º\sqrt{3}$ |
A£® | $\frac{5F}{64}$ | B£® | 0 | C£® | $\frac{3F}{64}$ | D£® | $\frac{3F}{16}$ |
A£® | ÒòΪľ¿é¾²Ö¹£¬¿ÉÖªF=mg | |
B£® | ľ¿éÊܵ½µÄĦ²ÁÁ¦µÄ·½Ïò¿ÉÄÜÏòÏ | |
C£® | Èç¹ûFÔö´ó£¬Ä¾¿éÓëǽ±Ú¼äµÄ¾²Ä¦²ÁÁ¦Ò²Ôö´ó | |
D£® | Èç¹ûFÔö´ó£¬Ä¾¿éÓëǽ±Ú¼äµÄĦ²ÁÁ¦ÈÔ²»±ä |