题目内容
【题目】如图,一质量为m,长度为l的均匀柔软细绳PQ竖直悬挂.用外力将绳的下端Q缓慢地竖直向上拉起至M点,M点与绳的上端P相距 l.重力加速度大小为g.在此过程中,外力做的功为( )
A.
mgl
B.
mgl
C.
mgl
D.
mgl
【答案】A
【解析】根据功能关系可知,拉力所做的功等于MQ段系统重力势能的增加量;对MQ分析,设Q点为零势能点,则可知,MQ段的重力势能为EP1= × = ;
将Q点拉至M点时,重心离Q点的高度h= + = ,故重力势能EP2═ × =
因此可知拉力所做的功W=EP2﹣EP1= mgl,故A正确,BCD错误.
故选:A.
【考点精析】本题主要考查了功能关系的相关知识点,需要掌握当只有重力(或弹簧弹力)做功时,物体的机械能守恒;重力对物体做的功等于物体重力势能的减少:W G =E p1 -E p2;合外力对物体所做的功等于物体动能的变化:W 合 =E k2 -E k1 (动能定理);除了重力(或弹簧弹力)之外的力对物体所做的功等于物体机械能的变化:W F =E 2 -E 1才能正确解答此题.
【题目】利用如图1所示的实验装置探究恒力做功与物体动能变化的关系.小车的质量为M=200.0g,钩码的质量为m=10.0g,打点计时器的电源为50Hz的交流电.
(1)挂钩码前,为了消除摩擦力的影响,应调节木板右侧的高度,直至向左轻推小车观察到 .
(2)挂上钩码,按实验要求打出的一条纸带如图2所示.选择某一点为O,一次每隔4个计时点取一个计数点.用刻度尺量出相邻计数点间的距离△x,记录在纸带上.计算打出各计数点时小车的速度v,其中打出计数点“1”时小车的速度v1=m/s.
(3)将钩码的重力视为小车受到的拉力,取g=9.80m/s2 , 利用W=mg△x算出拉力对小车做的功W.利用Ek= Mv2算出小车动能,并求出动能的变化量△Ek . 计算结果见下表.
W/×10﹣3J | 2.45 | 2.92 | 3.35 | 3.81 | 4.26 |
△Ek/×10﹣3J | 2.31 | 2.73 | 3.12 | 3.61 | 4.00 |
请根据表中的数据,在答题卡的方格纸上作出△Ek﹣W图象.
(4)实验结果表明,△Ek总是略小于W.某同学猜想是由于小车所受拉力小于钩码重力造成的.用题中小车和钩码质量的数据可算出小车受到的实际拉力F= .