题目内容
【题目】如图所示,ABCD为竖立放在场强为E=104V/m的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD部分是半径为R的半圆环,轨道的水平部分与半圆环相切,A为水平轨道上的一点,而且AB=R=0.2m.把一质量m=0.1kg、带电量q=10-4C的小球,放在水平轨道的A点由静止开始释放后,在轨道的内侧运动.(g取10 m/s2)求:
(1)它到达C点时的速度是多大?
(2)若让小球安全通过D点,开始释放点离B点至少多远?
【答案】(1)2 m/s (2)0.5 m
【解析】
(1)由A点到C点应用动能定理有
Eq(AB+R)-mgR=
解得
vC=2m/s
(2)在D点,小球要安全通过必有
mg≤m
设释放点距B点的距离为x,由动能定理得:
Eqx-mg2R=
以上两式联立可得
x≥0.5m.
【题目】利用如图1所示的实验装置探究恒力做功与物体动能变化的关系.小车的质量为M=200.0g,钩码的质量为m=10.0g,打点计时器的电源为50Hz的交流电.
(1)挂钩码前,为了消除摩擦力的影响,应调节木板右侧的高度,直至向左轻推小车观察到_____.
(2)挂上钩码,按实验要求打出的一条纸带如图2所示.选择某一点为O,一次每隔4个计时点取一个计数点.用刻度尺量出相邻计数点间的距离△x,记录在纸带上.计算打出各计数点时小车的速度v,其中打出计数点“1”时小车的速度v1=_____m/s.
(3)将钩码的重力视位小车受到的拉力,取g=9.80m/s2,利用W=mg△x算出拉力对小车做的功W.利用Ek=Mv2算出小车动能,并求出动能的变化量△Ek.计算结果见下表.
W/×10﹣3J | 2.45 | 2.92 | 3.35 | 3.81 | 4.26 |
△Ek/×10﹣3J | 2.31 | 2.73 | 3.12 | 3.61 | 4.00 |
请根据表中的数据,在答题卡的方格纸上作出△Ek﹣W图象.
(4)实验结果表明,△Ek总是略小于W.某同学猜想是由于小车所受拉力小于钩码重力造成的.用题中小车和钩码质量的数据可算出小车受到的实际拉力F=_____.