题目内容
【题目】如图甲所示,一长为l=1m的轻绳,一端穿在过O点的水平转轴上,另一端固定一质量为m=0.2kg的小球,整个装置绕O点在竖直面内转动.给系统输入能量,使小球通过最高点的速度不断加快,通过测量作出小球通过最高点时,绳对小球的拉力F与小球在最高点动能Ek的关系如图乙所示,重力加速度g=10m/s2 , 不考虑摩擦和空气阻力,请分析并回答以下问题:
(1)若要小球能做完整的圆周运动,对小球过最高点的速度有何要求?(用题中给出的字母表示)
(2)请根据题目及图象中的条件,求出图乙中b点所示状态小球的动能;
(3)当小球达到图乙中b点所示状态时,立刻停止能量输入.之后的运动过程中,在绳中拉力达到最大值的位置时轻绳绷断,求绷断瞬间绳中拉力的大小.
【答案】
(1)解:小球刚好通过最高点做完整圆运动要求在最高点受力满足:mg=m ,
因此小球过最高点的速度要满足:v≥ .
答:若要小球能做完整的圆周运动,对小球过最高点的速度满足:v≥ ;
(2)解:小球在最高点时有:mg+F=m 又因为:EK= mv2,
由图可知,b点时F=4.0N,
解得:EK=3.0J;
答:外界对此系统做的功为3.0J;
(3)解:在停止能量输入之后,小球在重力和轻绳拉力作用下在竖直面内做圆周运动,运动过程中机械能守恒.当小球运动到最低点时,绳中拉力达到最大值.
设小球在最低点的速度为v,对从b状态开始至达到最低点的过程应用机械能守恒定律,有:mg2l= mv2﹣EKb;
设在最低点绳中拉力为Fm,由牛顿第二定律有:Fm﹣mg=m ,
两式联立解得:Fm=16N,
即:绷断瞬间绳中拉力的大小为16N.
答:绷断瞬间绳中拉力的大小为16N.
【解析】(1)在最高点,由牛顿第二定律可求小球能做完整的圆周运动满足的条件;(2)在最高点,由牛顿第二定律并结合图象信息可求小球质量和摆线长度;由图象得斜率,根据动能定理求外界对系统做的功;(3)应用机械能守恒定律和牛顿第二定律求绷断瞬间绳中拉力的大小.
【考点精析】本题主要考查了向心力和功能关系的相关知识点,需要掌握向心力总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小;向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力;当只有重力(或弹簧弹力)做功时,物体的机械能守恒;重力对物体做的功等于物体重力势能的减少:W G =E p1 -E p2;合外力对物体所做的功等于物体动能的变化:W 合 =E k2 -E k1 (动能定理);除了重力(或弹簧弹力)之外的力对物体所做的功等于物体机械能的变化:W F =E 2 -E 1才能正确解答此题.