题目内容
1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个铜质D形合D1、D2构成,其间留有空隙,下列说法正确的是( )
A.离子由加速器的中心附近进入加速器 |
B.离子由加速器的边缘进入加速器 |
C.离子从磁场中获得能量 |
D.离子从电场中获得能量 |
AD
解析试题分析:回旋加速器的离子释放源在D形盒的中心,即在加速器的中心进入加速器,所以A正确;B错误;离子在电场中加速运动,在磁场中做匀速圆周运动,故离子从电场中获得能量,所以C错误;D正确
考点:本题考查回旋加速器
如图,在矩形区域abcd区域中,分布有垂直纸面向外的匀强磁场,ab长为L,在ab的中点P处有一电子发射源,出射电子速率取一切可能值,所有电子出射的速度方向均与ab成30°,下列说法正确的是( )
A.只要初速度大小取合适的值,电子可以在磁场中做完整的圆周运动 |
B.电子入射速度越大,在磁场中运动的时间一定越短 |
C.从ad边出射的电子一定比从bc出射的粒子时间长 |
D.当时,cd边无电子射出 |
回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒都处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列措施可行的是( )
A.增大匀强电场间的加速电压 |
B.增大磁场的磁感应强度 |
C.减小狭缝间的距离 |
D.增大D形金属盒的半径 |
如图,在虚线所围的矩形区域内,同时存在场强为E的匀强电场和磁感应强度为B的匀强磁场。已知从左方水平射入的电子,穿过该区域时未发生偏转,重力可忽略不计,则在这个区域中的E和B的方向不可能的是
A.E和B都沿水平方向,并与电子运动方向相同 |
B.E和B都沿水平方向,并与电子运动方向相反 |
C.E竖直向上,B垂直于纸面向外 |
D.E竖直向上,B垂直于纸面向里 |
如图所示,一个边长L、三边电阻相同的正三角形金属框放置在磁感应强度为B的匀强磁场中。若通以图示方向的电流(从A点流入,从C点流出),电流强度I,则金属框受到的磁场力为( )
A.0 |
B.ILB |
C.ILB |
D.2ILB |
空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界。一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射,如图所示。这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子。不计重力。下列说法正确的是( )
A.入射速度不同的粒子在磁场中的运动时间一定不同 |
B.入射速度相同的粒子在磁场中的运动轨迹一定相同 |
C.在磁场中运动时间相同的粒子,其运动轨迹一定相同 |
D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大 |
图中所示为某种质谱仪的工作原理示意图。此质谱仪由以下几部分构成:粒子源N;P、Q间的加速电场;静电分析器,即中心线半径为R的四分之一圆形通道,通道内有均匀辐射电场,方向沿径向指向圆心O,且与圆心O等距的各点电场强度大小相等;磁感应强度为B的有界匀强磁场,方向垂直纸面向外;胶片M。由粒子源发出的不同带电粒子,经加速电场加速后进入静电分析器,某些粒子能沿中心线通过静电分析器并经小孔S垂直磁场边界进入磁场,最终打到胶片上的某点。粒子从粒子源发出时的初速度不同,不计粒子所受重力。下列说法中正确的是
A.从小孔S进入磁场的粒子速度大小一定相等 |
B.从小孔S进入磁场的粒子动能一定相等 |
C.打到胶片上同一点的粒子速度大小一定相等 |
D.打到胶片上位置距离O点越远的粒子,比荷越大 |
如图是质谱仪工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A 1 A 2 .S下方有磁感应强度为B 0的匀强磁场.下列表述正确的是
A.质谱仪是分析同位素的重要工具 |
B.速度选择器中的磁场方向垂直纸面向外 |
C.能通过狭缝P的带电粒子的速率等于,与粒子带何种电荷无关 |
D.带电量相同的粒子打在胶片上的位置越靠近狭缝P,粒子的质量越大 |
1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖.若速度相同的同一束粒子由左端射入质谱仪后的运动轨迹如图所示,则下列相关说法中正确的是.
A.该束带电粒子带正电; |
B.速度选择器的P1极板带负电 |
C.在B2磁场中运动半径越大的粒子,比荷越小 |
D.在B2磁场中运动半径越大的粒子,质量越大 |