题目内容

如图所示,质量为m的小球,用长为L的细线悬挂在水平天花板上的O点.现将小球偏离平衡位置,使细线与竖直方向的夹角为α,然后将小球由静止释放.当小球运动到最低点时,试求:
(1)小球的速度大小;
(2)小球的角速度大小;
(3)小球对细线拉力的大小.
(已知当地的重力加速度为g,不计空气阻力)
精英家教网
(1)设球由静止释放运动到最低点时的速度大小为v,根据机械能守恒定律得:
mgL(1-cosα)=
1
2
mv2
解得:v=
2gL(1-cosα)

(2)根据v=ωL
联立解得小球的角速度大小ω=
2gL(1-cosα)
L

(3)设在最低点细线对小球拉力的大小为T,根据牛顿第二定律得:
T-mg=m
v2
L

解得:T=(3-2cosα)mg
根据牛顿第三定律,小球对细线拉力的大小
Tˊ=T=(3-2cosα)mg
答:(1)小球的速度大小为
2gL(1-cosα)

(2)小球的角速度大小为
2gL(1-cosα)
L

(3)小球对细线拉力的大小为(3-2cosα)mg.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网