ÌâÄ¿ÄÚÈÝ

14£®ÈçͼËùʾ£¬Çã½Ç¦È=30¡ãµÄ×ã¹»³¤Æ½Ðе¼¹ìMN¡¢M¡äN¡äÓëˮƽ·ÅÖõÄƽÐе¼¹ìNP¡¢N¡äP¡äƽ»¬Á¬½Ó£¬µ¼¹ì¼ä¾à¾ùΪL£¬MM¡ä¼ä½ÓÓÐ×èֵΪRµÄµç×裬¹ìµÀ¹â»¬ÇÒµç×è²»¼Æ£®Çãбµ¼¹ìMN¡¢M¡äN¡äÖ®¼ä£¨ÇøÓò¢ñ£©Óз½Ïò´¹Ö±µ¼¹ìƽÃæÏòÉϵÄÔÈÇ¿´Å³¡£¬Ë®Æ½²¿·ÖµÄee¡äff¡äÖ®¼ä£¨ÇøÓò¢ò£©ÓÐÊúÖ±ÏòÉÏ¡¢´Å¸ÐӦǿ¶ÈΪB2µÄÔÈÇ¿´Å³¡£¬´Å³¡¿í¶ÈΪd£®ÖÊÁ¿Îªm¡¢µç×èΪr¡¢³¤¶ÈÂÔ´óÓÚLµÄµ¼Ìå°ôab´Ó¿¿½ü¹ìµÀÉ϶˵ÄijλÖÃÓɾ²Ö¹¿ªÊ¼Ï»¬£¬°ôʼÖÕÓëµ¼¹ì´¹Ö±²¢½Ó´¥Á¼ºÃ£¬¾­¹ýee¡äºÍff¡äλÖÃʱµÄËÙÂÊ·Ö±ðΪvºÍ$\frac{v}{4}$£®ÒÑÖªµ¼Ìå°ôab½øÈëÇøÓò¢òÔ˶¯Ê±£¬ÆäËٶȵļõСÁ¿ÓëËüÔڴų¡ÖÐͨ¹ýµÄ¾àÀë³ÉÕý±È£¬¼´¡÷v¡Ø¡÷x£®

£¨1£©ÇóÇøÓò¢ñÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈB1£»
£¨2£©Çóµ¼Ìå°ôabͨ¹ýÇøÓò¢ò¹ý³ÌÖеç×èR²úÉúµÄ½¹¶úÈÈ£»
£¨3£©¸Ä±äB1ʹµ¼Ìå°ôab²»ÄÜ´©¹ýÇøÓò¢ò£¬Éèµ¼Ìå°ôab´Ó¾­¹ýee¡äµ½Í£Ö¹Í¨¹ýµç×èRµÄµçÁ¿Îªq£¬ÇóB1µÄÈ¡Öµ·¶Î§£¬¼°qÓëB1µÄ¹Øϵʽ£®

·ÖÎö £¨1£©ÓÉÓÚµ¼¹ì×ã¹»³¤£¬Ôòab°ôµ½´ïµ¼¹ìµ×¶ËNN¡äÇ°ÒѾ­×öÔÈËÙÔ˶¯£¬¸ù¾ÝƽºâÌõ¼þºÍ°²ÅàÁ¦¹«Ê½Çó½âB1£®
£¨2£©Éèab°ôºÍµç×èR²úÉúµÄµçÈÈ·Ö±ðΪQrºÍQR£¬ÔòÓÐ$\frac{{Q}_{R}}{{Q}_{r}}$=$\frac{R}{r}$£¬ÔÙÓÉÄÜÁ¿ÊغãÊغ㶨ÂÉÇó½â£®  
£¨3£©Éè°ôÒÔËÙ¶Èvxͨ¹ýee¡äʱ£¬ÔÚÇøÓò¢òÖ묶¯xºóͣϣ¬¾ÝÌ⣬¡÷v¡Ø¡÷x£¬¿ÉµÃ vx=$\frac{v-\frac{v}{4}}{a}$x=$\frac{3x}{4d}$v£®¸ù¾Ý°ôÔÈËÙÔ˶¯Ê±ÊÜÁ¦Æ½ºâ£¬ÁÐʽµÃµ½B1ÓëxµÄ¹Øϵʽ£¬Ê¹µ¼Ìå°ôab²»ÄÜ´©¹ýÇøÓò¢ò£¬Ó¦Âú×ãx£¼d£¬µÃµ½¶ÔÓ¦B1µÄÈ¡Öµ·¶Î§£®ÔÙ¸ù¾Ý·¨À­µÚµç´Å¸ÐÓ¦¶¨ÂɺÍÅ·Ä·¶¨ÂÉÇó½âµçÁ¿£®

½â´ð ½â£º£¨1£©Óɵ¼¹ì×ã¹»³¤¿ÉÖªabµ½´ïµ¼¹ìµ×¶ËNN¡äÇ°ÒѾ­×öÔÈËÙÔ˶¯£¬ËÙÂÊΪv£¬Éè´Ëʱab²úÉúµÄµç¶¯ÊÆΪE£¬µçÁ÷ΪI£¬ÔòÓÐ
  E=B1Lv             ¢Ù
  I=$\frac{E}{R+r}$            ¢Ú
ÓÉƽºâÌõ¼þµÃ mgsin¦È=B1IL           ¢Û
ÁªÁ¢¢Ù¢Ú¢Û½âµÃ B1=$\frac{1}{L}$$\sqrt{\frac{mg£¨R+r£©}{2v}}$      ¢Ü
£¨2£©Éèab°ôºÍµç×èR²úÉúµÄµçÈÈ·Ö±ðΪQrºÍQR£¬ÔòÓÐ
  $\frac{{Q}_{R}}{{Q}_{r}}$=$\frac{R}{r}$                          ¢Ý
ÓÉÄÜÁ¿ÊغãÊغ㶨Âɵà $\frac{1}{2}m{v}^{2}$=$\frac{1}{2}m£¨\frac{v}{4}£©^{2}$+QR+Qr ¢Þ
ÁªÁ¢¢Ý¢Þ½âµÃ QR=$\frac{15m{v}^{2}R}{32£¨R+r£©}$             ¢ß
£¨3£©Éè°ôÒÔËÙ¶Èvxͨ¹ýee¡äʱ£¬ÔÚÇøÓò¢òÖ묶¯xºóͣϣ¬ÒÀÌâÒâÓÐ
  vx=$\frac{v-\frac{v}{4}}{a}$x=$\frac{3x}{4d}$v   ¢à
Éè°ôÔÈËÙÔ˶¯Ê±²úÉúµÄµç¶¯ÊÆΪEx£¬µçÁ÷ΪIx£¬ÔòÓÐ
  mgsin¦È=B1IxL     ¢á
  Ex=B1Lvx ¢â
  Ix=$\frac{{E}_{x}}{R+r}$
ÁªÁ¢½âµÃ B1=$\frac{1}{L}$$\sqrt{\frac{2mgd£¨R+r£©}{3vx}}$£©
ʹµ¼Ìå°ôab²»ÄÜ´©¹ýÇøÓò¢ò£¬Ó¦Âú×ãx£¼d£¬¶ÔÓ¦B1µÄÈ¡Öµ·¶Î§ÊÇ
 B1£¾$\frac{1}{L}$$\sqrt{\frac{2mg£¨R+r£©}{3v}}$
Éèab°ôͨ¹ýee'ºó»¬¶¯¾àÀëxºóͣϣ¬Ê±¼äΪ¡÷t£¬Ôò´Ë¹ý³Ì
°ô²úÉúµÄƽ¾ùµç¶¯ÊÆ $\overline{E}$=$\frac{¡÷¦µ}{¡÷t}$=$\frac{{B}_{2}Lx}{¡÷t}$ 
»Ø·µÄƽ¾ùµçÁ÷  $\overline{I}$=$\frac{\overline{E}}{R+r}$             
ͨ¹ýµç×èRµÄµçÁ¿ q=$\overline{I}$¡÷t                
ÁªÁ¢½âµÃ q=$\frac{2{B}_{2}mgd}{3{B}_{1}^{2}Lv}$  £¨B1£¾$\frac{1}{L}$$\sqrt{\frac{2mg£¨R+r£©}{3v}}$£©£®
´ð£º£¨1£©ÇøÓò¢ñÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈB1ÊÇ$\frac{1}{L}$$\sqrt{\frac{mg£¨R+r£©}{2v}}$£®
£¨2£©µ¼Ìå°ôabͨ¹ýÇøÓò¢ò¹ý³ÌÖеç×èR²úÉúµÄ½¹¶úÈÈÊÇ$\frac{15m{v}^{2}R}{32£¨R+r£©}$£®
£¨3£©B1µÄÈ¡Öµ·¶Î§ÎªB1£¾$\frac{1}{L}$$\sqrt{\frac{2mg£¨R+r£©}{3v}}$£¬qÓëB1µÄ¹ØϵʽΪq=$\frac{2{B}_{2}mgd}{3{B}_{1}^{2}Lv}$  £¨B1£¾$\frac{1}{L}$$\sqrt{\frac{2mg£¨R+r£©}{3v}}$£©£®

µãÆÀ ±¾ÌâÊÇÐÅÏ¢Ì⣬һ·½Ãæ¸ù¾Ýµ¼Ìå°ôÔÈËÙÔ˶¯£¬ÊÜÁ¦Æ½ºâÁÐʽ·ÖÎö£¬ÁíÒ»·½Ã棬ץסÌâÖÐÐÅÏ¢·ÖÎöËÙ¶ÈÓëλÒƵĹØϵ£¬ÕâÊDZ¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø