ÌâÄ¿ÄÚÈÝ
B£®£¨Ñ¡ÐÞÄ£¿é3-4£©
£¨1£©ÒÔÏÂ˵·¨ÖÐÕýÈ·µÄÊÇ
A£®¹âµÄÆ«ÕñÏÖÏó˵Ã÷¹âÊÇÒ»ÖÖ×ݲ¨
B£®Ïà¶ÔÂÛÈÏΪ¿Õ¼äºÍʱ¼äÓëÎïÖʵÄÔ˶¯×´Ì¬ÎÞ¹Ø
C£®Âó¿Ë˹ΤԤÑÔ²¢ÓÃʵÑéÑéÖ¤Á˵ç´Å²¨µÄ´æÔÚ
D£®ÔÚ¹âµÄË«·ì¸ÉÉæʵÑéÖУ¬Èô½ö½«ÈëÉä¹âÓÉÂ̹â±äΪºì¹â£¬ÔòÌõÎƼä¾à±ä¿í
£¨2£©Ö±½Ç²£Á§ÈýÀâ¾µµÄ½ØÃæÈçͼËùʾ£¬Ò»Ìõ¹âÏß´ÓABÃæÈëÉ䣬abΪÆäÕÛÉä¹âÏߣ¬abÓëABÃæµÄ¼Ð½Ç¦Á=60¡ã£®ÒÑÖªÕâÖÖ²£Á§µÄÕÛÉäÂÊn=
£¬Ôò£º
¢ÙÕâÌõ¹âÏßÔÚABÃæÉϵÄÈëÉä½ÇΪ £»
¢ÚͼÖйâÏßab £¨Ìî¡°ÄÜ¡±»ò¡°²»ÄÜ¡±£©´ÓACÃæÕÛÉä³öÈ¥£®
£¨3£©ÈçͼËùʾÊÇÒ»ÁÐÑØxÖáÕý·½Ïò´«²¥µÄ¼òгºá²¨ÔÚt=0ʱ¿ÌµÄ²¨ÐÎͼ£¬ÒÑÖª²¨µÄ´«²¥ËÙ¶Èv=2m/s£®ÊԻشðÏÂÁÐÎÊÌ⣺
¢Ùд³öx=0.5m´¦µÄÖʵã×ö¼òгÔ˶¯µÄ±í´ïʽ£º cm£»
¢Úx=0.5m´¦ÖʵãÔÚ0¡«5.5sÄÚͨ¹ýµÄ·³ÌΪ cm£®
£¨1£©ÒÔÏÂ˵·¨ÖÐÕýÈ·µÄÊÇ
A£®¹âµÄÆ«ÕñÏÖÏó˵Ã÷¹âÊÇÒ»ÖÖ×ݲ¨
B£®Ïà¶ÔÂÛÈÏΪ¿Õ¼äºÍʱ¼äÓëÎïÖʵÄÔ˶¯×´Ì¬ÎÞ¹Ø
C£®Âó¿Ë˹ΤԤÑÔ²¢ÓÃʵÑéÑéÖ¤Á˵ç´Å²¨µÄ´æÔÚ
D£®ÔÚ¹âµÄË«·ì¸ÉÉæʵÑéÖУ¬Èô½ö½«ÈëÉä¹âÓÉÂ̹â±äΪºì¹â£¬ÔòÌõÎƼä¾à±ä¿í
£¨2£©Ö±½Ç²£Á§ÈýÀâ¾µµÄ½ØÃæÈçͼËùʾ£¬Ò»Ìõ¹âÏß´ÓABÃæÈëÉ䣬abΪÆäÕÛÉä¹âÏߣ¬abÓëABÃæµÄ¼Ð½Ç¦Á=60¡ã£®ÒÑÖªÕâÖÖ²£Á§µÄÕÛÉäÂÊn=
2 |
¢ÙÕâÌõ¹âÏßÔÚABÃæÉϵÄÈëÉä½ÇΪ
¢ÚͼÖйâÏßab
£¨3£©ÈçͼËùʾÊÇÒ»ÁÐÑØxÖáÕý·½Ïò´«²¥µÄ¼òгºá²¨ÔÚt=0ʱ¿ÌµÄ²¨ÐÎͼ£¬ÒÑÖª²¨µÄ´«²¥ËÙ¶Èv=2m/s£®ÊԻشðÏÂÁÐÎÊÌ⣺
¢Ùд³öx=0.5m´¦µÄÖʵã×ö¼òгÔ˶¯µÄ±í´ïʽ£º
¢Úx=0.5m´¦ÖʵãÔÚ0¡«5.5sÄÚͨ¹ýµÄ·³ÌΪ
·ÖÎö£º£¨1£©Æ«ÕñÏÖÏó˵Ã÷¹âÊÇÒ»ÖֺᲨ£»Ïà¶ÔÂÛÈÏΪ¿Õ¼äºÍʱ¼äÓëÎïÖʵÄÔ˶¯×´Ì¬Óйأ»Âó¿Ë˹ΤԤÑÔµç´Å²¨µÄ´æÔÚ£¬ºÕ×È֤ʵÁ˵ç´Å²¨´æÔÚ£®¸ù¾ÝË«·ì¸ÉÉæÌõÎƵļä¾à¹«Ê½Åжϼä¾àµÄ±ä»¯£®
£¨2£©¸ù¾ÝÕÛÉ䶨ÂÉÇó³öÈëÉä½ÇµÄ´óС£¬Í¨¹ýÔÚACÃæµÄÈëÉä½ÇºÍÁÙ½ç½Ç±È½Ï£¬ÅжÏÊÇ·ñ·¢ÉúÈ«·´É䣮
£¨3£©¸ù¾Ý²¨³¤ºÍ²¨ËÙÇó³ö²¨µÄÖÜÆÚ£¬´Ó¶øµÃ³öÖʵãµÄÕñ¶¯ÖÜÆÚ£¬µÃ³öÖʵãµÄÕñ¶¯·½³Ì£»¸ù¾ÝÒ»¸öÖÜÆÚÄÚ×ß¹ýµÄ·³ÌµÈÓÚ4±¶µÄÕñ·ùÇó³öÖʵãµÄ·³Ì£®
£¨2£©¸ù¾ÝÕÛÉ䶨ÂÉÇó³öÈëÉä½ÇµÄ´óС£¬Í¨¹ýÔÚACÃæµÄÈëÉä½ÇºÍÁÙ½ç½Ç±È½Ï£¬ÅжÏÊÇ·ñ·¢ÉúÈ«·´É䣮
£¨3£©¸ù¾Ý²¨³¤ºÍ²¨ËÙÇó³ö²¨µÄÖÜÆÚ£¬´Ó¶øµÃ³öÖʵãµÄÕñ¶¯ÖÜÆÚ£¬µÃ³öÖʵãµÄÕñ¶¯·½³Ì£»¸ù¾ÝÒ»¸öÖÜÆÚÄÚ×ß¹ýµÄ·³ÌµÈÓÚ4±¶µÄÕñ·ùÇó³öÖʵãµÄ·³Ì£®
½â´ð£º½â£º£¨1£©A¡¢¹âµÄÆ«ÕñÏÖÏó˵Ã÷¹âÊÇÒ»ÖֺᲨ£®¹ÊA´íÎó£®
B¡¢Ïà¶ÔÂÛÈÏΪ¿Õ¼äºÍʱ¼äÓëÎïÖʵÄÔ˶¯×´Ì¬Óйأ®¹ÊB´íÎó£®
C¡¢Âó¿Ë˹ΤԤÑÔÁ˵ç´Å²¨µÄ´æÔÚ£¬ºÕ×È֤ʵÁ˵ç´Å²¨µÄ´æÔÚ£®¹ÊC´íÎó£®
D¡¢¸ù¾Ý¡÷x=
¦ËÖª£¬ºì¹âµÄ²¨³¤´óÓÚÂ̹âµÄ²¨³¤£¬Ôòºì¹â²úÉúµÄ¸ÉÉæÌõÎƼä¾à¿í£®¹ÊDÕýÈ·£®
£¨2£©¢Ù¸ù¾Ý¼¸ºÎ¹Øϵ֪£¬ÕÛÉä½ÇΪ30¡ã£¬¸ù¾ÝÕÛÉ䶨Âɵã¬n=
½âµÃÈëÉä½Ç¦È=45¡ã£®
¢Ú¹âÔÚACÃæÉϵÄÈëÉä½ÇΪ60¡ã£¬ÒòΪsin60¡ã£¾sinC=
£¬·¢ÉúÈ«·´É䣬¹âÏß²»ÄÜ´ÓACÃæÉÏÕÛÉä³öÈ¥£®
£¨3£©ÖʵãµÄÕñ¶¯ÖÜÆÚµÈÓÚ²¨µÄÖÜÆÚ£¬T=
=
s=1s£¬¦Ø=
=2¦Ð£®x=0.5m´¦µÄÖʵãÔÚt=0ʱ¿Ì´¦ÓÚÕýÏò×î´óλÒÆ´¦£¬ÔòÕñ¶¯·½³ÌΪy=Acos¦Øt=5cos2¦Ðt cm£®
ÖʵãÔÚÒ»¸öÖÜÆÚÄÚ×ß¹ýµÄ·³ÌµÈÓÚ4±¶µÄÕñ·ù£¬s=
¡Á4A=
¡Á4¡Á5cm=110cm£®
¹Ê´ð°¸Îª£º£¨1£©D £¨2£©¢Ù45¡ã ¢Ú²»ÄÜ £¨3£©¢Ùy=5cos2¦Ðt 110cm
B¡¢Ïà¶ÔÂÛÈÏΪ¿Õ¼äºÍʱ¼äÓëÎïÖʵÄÔ˶¯×´Ì¬Óйأ®¹ÊB´íÎó£®
C¡¢Âó¿Ë˹ΤԤÑÔÁ˵ç´Å²¨µÄ´æÔÚ£¬ºÕ×È֤ʵÁ˵ç´Å²¨µÄ´æÔÚ£®¹ÊC´íÎó£®
D¡¢¸ù¾Ý¡÷x=
L |
d |
£¨2£©¢Ù¸ù¾Ý¼¸ºÎ¹Øϵ֪£¬ÕÛÉä½ÇΪ30¡ã£¬¸ù¾ÝÕÛÉ䶨Âɵã¬n=
sin¦È |
sin30¡ã |
½âµÃÈëÉä½Ç¦È=45¡ã£®
¢Ú¹âÔÚACÃæÉϵÄÈëÉä½ÇΪ60¡ã£¬ÒòΪsin60¡ã£¾sinC=
| ||
2 |
£¨3£©ÖʵãµÄÕñ¶¯ÖÜÆÚµÈÓÚ²¨µÄÖÜÆÚ£¬T=
¦Ë |
v |
2 |
2 |
2¦Ð |
T |
ÖʵãÔÚÒ»¸öÖÜÆÚÄÚ×ß¹ýµÄ·³ÌµÈÓÚ4±¶µÄÕñ·ù£¬s=
t |
T |
5.5 |
1 |
¹Ê´ð°¸Îª£º£¨1£©D £¨2£©¢Ù45¡ã ¢Ú²»ÄÜ £¨3£©¢Ùy=5cos2¦Ðt 110cm
µãÆÀ£º±¾Ì⿼²éÁ˲¨¶¯¡¢Õñ¶¯¡¢ÕÛÉ䶨ÂÉ¡¢¸ÉÉ桢ƫÕñ¡¢Ïà¶ÔÂÛµÈ֪ʶµã£¬ÄѶȲ»´ó£¬¹Ø¼üÒªÊìϤ½Ì²Ä£¬ÀμÇÕâЩ»ù±¾¸ÅÄîºÍ»ù±¾¹æÂÉ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿