ÌâÄ¿ÄÚÈÝ
18£®¼ß-15Õ½»úÊÇÎÒ¹ú×ÔÐÐÉè¼ÆÑÐÖƵÄÊ×Ðͽ¢¶àÓÃ;¼ß»÷»ú£¬¶Ì¾àÆð·ÉÄÜÁ¦Ç¿´ó£¬Èô¼ß-15Õ½»úÕý³£Æð·É¹ý³ÌÖмÓËÙ¶ÈΪa£¬¾s¾àÀë¾Í´ïµ½Æð·ÉËÙ¶ÈÌÚ¿Õ¶øÆð£¬ÏÖÒÑÖª¡°ÁÉÄþ¡±½¢Æð·É¼×°å³¤ÎªL£¨L£¼s£©£¬ÇÒÆð·É¹ý³Ì¿É¼ò»¯ÎªÔȼÓËÙÖ±ÏßÔ˶¯£¬ÏÖÓÐÁ½ÖÖ·½·¨ÖúÆäÕý³£Æð·É£¬·½·¨Ò»£ºÔÚº½¿Õĸ½¢¾²Ö¹µÄÇé¿öÏ£¬Óõ¯Éäϵͳ¸ø·É»úÒÔÒ»¶¨µÄ³õËٶȣ»·½·¨¶þ£ºÆð·ÉÇ°ÏÈÈú½¿Õĸ½¢ÑØ·É»úÆð·É·½ÏòÒÔijһËÙ¶ÈÔÈËÙº½ÐУ¬Ç󣺣¨1£©·½·¨Ò»Çé¿öϵ¯Éäϵͳʹ·É»ú¾ßÓеÄ×îСËÙ¶Èvmin£»
£¨2£©·½·¨¶þÇé¿öϺ½¿Õĸ½¢µÄ×îСËٶȼ°´Ë¹ý³ÌÖеÄλÒÆ£®
·ÖÎö £¨1£©·½·¨Ò»Çé¿öÏ·ɻúÆð·É¹ý³Ì¼ò»¯ÎªÔȼÓËÙÖ±ÏßÔ˶¯£¬ÓÉËÙ¶ÈλÒƹØϵ¹«Ê½Çó½âvmin£»
£¨2£©·½·¨¶þÇé¿öϺ½¿Õĸ½¢ÔÈËÙÔ˶¯£¬·É»úÔȼÓËÙÔ˶¯£¬ÓÉËÙ¶Èʱ¼ä¹«Ê½Çó³öʱ¼ä£¬ÓÉËÙ¶ÈλÒƹØϵ¹«Ê½Çó³ö·É»úµÄλÒÆ£¬ÓÉÔÈËÙÔ˶¯µÄλÒƹ«Ê½Áгöº½¿Õĸ½¢µÄλÒÆ£¬·É»úÓ뺽¿Õĸ½¢Î»ÒÆÖ®²îµÈÓÚL£¬ÁªÁ¢¿ÉÇó½â£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ£º·É»úµÄÆð·ÉËÙ¶È v=$\sqrt{2as}$£¬
·½·¨Ò»Çé¿öÏ£¬·É»ú×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ÓÉv2-v1m2=2aL£¬
½âµÃ£ºv1m=$\sqrt{2a£¨s-L£©}$£»
£¨2£©ÉèµÚ¶þÖÖ·½·¨ÖÐÆð·É¹ý³Ì¾Àúʱ¼äΪt£¬Ôò£ºt=$\frac{v-{v}_{2m}}{a}$£¬
·É»úλÒÆ x1=$\frac{{v}^{2}-{v}_{2m}^{2}}{2a}$£¬
º½Ä¸Î»ÒÆ x2=v2mt
λÒƹØϵ x1-x2=L
½âµÃ£ºv2m=$\sqrt{2as}$-$\sqrt{2aL}$£¬x2=2£¨$\sqrt{sL}$-L£©
´ð£º£¨1£©·½·¨Ò»Çé¿öϵ¯Éäϵͳʹ·É»ú¾ßÓеÄ×îС³õËÙ¶ÈvminΪ$\sqrt{2a£¨s-L£©}$£®
£¨2£©·½·¨¶þÇé¿öϺ½¿Õĸ½¢µÄ×îСËÙ¶ÈΪ$\sqrt{2as}$-$\sqrt{2aL}$£¬´Ë¹ý³ÌÖеÄλÒÆΪ£º2£¨$\sqrt{sL}$-L£©£®
µãÆÀ ±¾ÌâÒª½¨Á¢ÇåÎúµÄÎïÀíÇé¾°£¬·ÖÎö³ö·É»úºÍº½Ä¸Î»ÒƵĹØϵÊǹؼü£¬ÔÙÔËÓÃÔ˶¯Ñ§»ù±¾¹«Ê½½øÐÐÑо¿£®
A£® | ÖÜÆÚ | B£® | ¹ìµÀµÄÖܳ¤ | C£® | ̽²âÆ÷µÄÖÊÁ¿ | D£® | ÏßËٶȵĴóС |
A£® | ¸ÃµçºÉÔ˶¯µÄ¹ì¼£¿ÉÄÜÊÇb | |
B£® | MNÁ½µã¼äµÄµçÊƲîΪ-100 V | |
C£® | ¸ÃµçºÉ´ÓMµãÔ˶¯µ½NµãʱµçÊÆÄÜÔö¼Ó | |
D£® | ¸ÃµçºÉ´ÓMµãÓɾ²Ö¹¿ªÊ¼Ô˶¯ |
A£® | ¼ÓËÙ¶È | B£® | ¶¯ÄÜ | C£® | ËÙ¶È | D£® | »úеÄÜ |
A£® | СÇòÉÏÅ׵ijõËÙ¶ÈΪ10m/s | B£® | ÔÂÇò±íÃæµÄÖØÁ¦¼ÓËÙ¶ÈΪ1.6m/s2 | ||
C£® | СÇòÊܵ½ÔÂÇòµÄÒýÁ¦Îª10N | D£® | СÇòÊܵ½ÔÂÇòµÄÒýÁ¦Îª1.6N |
A£® | ¼×µÄÏßËٶȴó£¬ÆäÏòÐļÓËٶȵÈÓÚÖØÁ¦¼ÓËÙ¶È | |
B£® | ¼×µÄÏßËٶȴ󣬼׺ÍÒÒÓëµØÇò×ÔתµÄÖÜÆÚÏàµÈ | |
C£® | ÒÒµÄÏßËٶȴ󣬼׺ÍÒÒÓëµØÇò×ÔתµÄÖÜÆÚÏàµÈ | |
D£® | ¼×ºÍÒÒµÄÏßËÙ¶ÈÏàµÈ£¬¾ùµÈÓÚµÚÒ»ÓîÖæËÙ¶È |
A£® | µÈÓÚ9.8N | B£® | ´óÓÚ9.8N | C£® | СÓÚ9.8N | D£® | µÈÓÚÁã |