ÌâÄ¿ÄÚÈÝ
£¨1£©A³µµÄÖÊÁ¿´óС£®
£¨2£©A³µ·´µ¯ºó£¬ÒÑ֪СÇòÉÏÉýµÄ×î¸ßµãµÍÓÚͲµÄÖÐÐÄ£¬ÇóA³µÄÜ»ñµÃµÄ×î´óÏò×óµÄËٶȵĴóС£®
·ÖÎö£º£¨1£©A¡¢BÅöײ¹ý³ÌÖУ¬A¡¢B×é³ÉµÄϵͳ¶¯Á¿Êغ㣬¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÇó½âAµÄÖÊÁ¿£»
£¨2£©A³µ·´µ¯ºó£¬µ±Ð¡ÇòÉÏÉýµ½×î¸ßµã´¦µ½Ôٴηµ»Ø×îµÍµãÏòÓÒÔ˶¯Ê±£¬³µA¾ßÓÐÏò×óµÄ×î´óËÙ¶È£¬ÓÉA¡¢CµÄ¶¯Á¿Êغ㶨Âɼ°»úеÄÜÊØºã¼´¿ÉÇó½â£®
£¨2£©A³µ·´µ¯ºó£¬µ±Ð¡ÇòÉÏÉýµ½×î¸ßµã´¦µ½Ôٴηµ»Ø×îµÍµãÏòÓÒÔ˶¯Ê±£¬³µA¾ßÓÐÏò×óµÄ×î´óËÙ¶È£¬ÓÉA¡¢CµÄ¶¯Á¿Êغ㶨Âɼ°»úеÄÜÊØºã¼´¿ÉÇó½â£®
½â´ð£º½â£º£¨1£©A¡¢BÏàÅö£¬È¡ÏòÓÒΪÕý·½Ïò£¬Óɶ¯Á¿ÊغãµÃ
4mv0+£¨m+mA£©£¨-v0£©=£¨m+mA£©v0
½âµÃ mA=m
£¨2£©A³µ·´µ¯ºó£¬µ±Ð¡ÇòÉÏÉýµ½×î¸ßµã´¦µ½Ôٴηµ»Ø×îµÍµãÏòÓÒÔ˶¯Ê±£¬³µA¾ßÓÐÏò×óµÄ×î´óËÙ¶È£¬ÉèËÙ¶È´óСΪvA£¬CµÄËÙ¶È´óСΪvc£¬Ôò¶ÔA¡¢CԲͲ×é³ÉµÄϵͳ£¬Âú×㶯Á¿ÊغãºÍ»úеÄÜÊØºã£¬µÃ
£¨mA+m£©v0+2m£¨-v0£©=£¨mA+m£©£¨-vA£©+2mvc
(mA+m)
+
2m
=
(mA+m)
+
2m
½âµÃ vA=vc=v0
¼´A³µÄÜ»ñµÃµÄ×î´óÏò×óËÙ¶È´óСΪv0£®
´ð£º
£¨1£©A³µµÄÖÊÁ¿´óСÊÇm£®
£¨2£©A³µ·´µ¯ºó£¬ÒÑ֪СÇòÉÏÉýµÄ×î¸ßµãµÍÓÚͲµÄÖÐÐÄ£¬A³µÄÜ»ñµÃµÄ×î´óÏò×óµÄËٶȵĴóСΪv0£®
4mv0+£¨m+mA£©£¨-v0£©=£¨m+mA£©v0
½âµÃ mA=m
£¨2£©A³µ·´µ¯ºó£¬µ±Ð¡ÇòÉÏÉýµ½×î¸ßµã´¦µ½Ôٴηµ»Ø×îµÍµãÏòÓÒÔ˶¯Ê±£¬³µA¾ßÓÐÏò×óµÄ×î´óËÙ¶È£¬ÉèËÙ¶È´óСΪvA£¬CµÄËÙ¶È´óСΪvc£¬Ôò¶ÔA¡¢CԲͲ×é³ÉµÄϵͳ£¬Âú×㶯Á¿ÊغãºÍ»úеÄÜÊØºã£¬µÃ
£¨mA+m£©v0+2m£¨-v0£©=£¨mA+m£©£¨-vA£©+2mvc
| 1 |
| 2 |
| v | 2 0 |
| 1 |
| 2 |
| v | 2 0 |
| 1 |
| 2 |
| v | 2 A |
| 1 |
| 2 |
| v | 2 c |
½âµÃ vA=vc=v0
¼´A³µÄÜ»ñµÃµÄ×î´óÏò×óËÙ¶È´óСΪv0£®
´ð£º
£¨1£©A³µµÄÖÊÁ¿´óСÊÇm£®
£¨2£©A³µ·´µ¯ºó£¬ÒÑ֪СÇòÉÏÉýµÄ×î¸ßµãµÍÓÚͲµÄÖÐÐÄ£¬A³µÄÜ»ñµÃµÄ×î´óÏò×óµÄËٶȵĴóСΪv0£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˶¯Á¿Êغ㶨Âɼ°ÄÜÁ¿Êغ㶨ÂɵÄÖ±½ÓÓ¦Ó㬹ؼüÊÇÅжÏA³µÄÜ»ñµÃ×î´óÏò×óËٶȵÄÌõ¼þ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿