题目内容

精英家教网如图所示,用等长的绝缘线分别悬挂两个质量、电荷量都相同的带电小球A和B,两线上端固定于O点,B球固定在O点正下方.当A球静止时,两悬线夹角为θ.能保持夹角θ不变的方法是(  )
分析:小球A受力平衡,受重力、静电斥力和拉力,三力平衡,结合平衡条件分析即可.
解答:解:小球A受力平衡,受重力、静电斥力和拉力,三力平衡,重力和静电斥力的合力沿着绳子伸长的方向,只要重力和静电斥力的合力方向不变,球就能保持平衡;
A、同时使两悬线长度减半,若角度θ不变,球间距减半,根据公式F=k
Qq
r2
,静电斥力增加为4倍,故重力和静电斥力的合力方向一定改变,不能在原位置平衡,故A错误;
B、同时使A球的质量和电荷量减半,A球的重力和静电力都减小为一半,故重力和静电斥力的合力方向不变,球能保持平衡,故B正确;
C、同时使两球的质量和电荷量减半,A球的重力减小为一半,静电力都减小为四分之一,故故重力和静电斥力的合力方向一定改变,不能在原位置平衡,故C错误;
D、同时使两悬线长度和两球的电荷量减半,球间距减为一半,根据公式F=k
Qq
r2
,静电力不变,故重力和静电斥力的合力方向不变,球能保持平衡,故D正确;
故选BD.
点评:本题关键是明确小球间静电力和重力的合力方向不变时,球就能在原位置保持平衡,不难.
练习册系列答案
相关题目
选考题

1.[物理——选修2-2] (1)常见的传动方式有__________、__________、__________和齿轮传动等。齿轮传动的传动比是主动轮与__________的转速之比,传动比等于__________与__________的齿数之比。

(2)液压千斤顶是利用密闭容器内的液体能够把液体所受到的压强向各个方向传递的原理制成的。图为一小型千斤顶的结构示意图。大活塞A的直径D1=20 cm,小活塞B的直径D2=5 cm,手柄的长度OC=50 cm,小活塞与手柄的连接点到转轴O的距离DO=10 cm。现用此千斤顶使质量m=4×103 kg的重物升高了h=10 cm。g取10 m/s2,求

(i)若此千斤顶的效率为80%,在这一过程中人做的功为多少?

(ii)若此千斤顶的效率为100%,当重物上升时,人对手柄的作用力F至少要多大?

2.[物理——选修3-3]

(1)带有活塞的气缸内封闭一定量的理想气体。气体开始处于状态a,然后经过过程ab到达状态b或经过过程ac到达状态c,b、c状态温度相同,如V-T图所示。设气体在状态b和状态c的压强分别为pb和pc,在过程ab和ac中吸收的热量分别为Qab和Qac,则___________(填入选项前的字母,有填错的不得分)

A.pb>pc,Qab>Qac                        B.pb>pc,Qab<Qac

C.pb<pc,Qab>Qac                        D.pb<pc,Qab<Qac

(2)图中系统由左右两个侧壁绝热、底部导热、截面均为S的容器组成。左容器足够高,上端敞开,右容器上端由导热材料封闭。两容器的下端由可忽略容积的细管连通。

容器内两个绝热的活塞A、B下方封有氮气,B上方封有氢气。大气的压强为p0,温度为T0=273 K,两活塞因自身重量对下方气体产生的附加压强均为0.1p0。系统平衡时,各气柱的高度如图所示。现将系统底部浸入恒温热水槽中,再次平衡时A上升了一定高度。用外力将A缓慢推回第一次平衡时的位置并固定,第三次达到平衡后,氢气柱高度为0.8h。氮气和氢气均可视为理想气体。求

(i)第二次平衡时氮气的体积;

(ii)水的温度。

3.[物理——选修3-4]

(1)某振动系统的固有频率为f0,在周期性驱动力的作用下做受迫振动,驱动力的频率为f。若驱动力的振幅保持不变,下列说法正确的是______(填入选项前的字母,有填错的不得分)

A.当f<f0时,该振动系统的振幅随f增大而减小

B.当f>f0时,该振动系统的振幅随f减小而增大

C.该振动系统的振动稳定后,振动的频率等于f0

D.该振动系统的振动稳定后,振动的频率等于f

(2)一棱镜的截面为直角三角形ABC,∠A=30°,斜边AB=a。棱镜材料的折射率为。在此截面所在的平面内,一条光线以45°的入射角从AC边的中点M射入棱镜。画出光路图,并求光线从棱镜射出的点的位置(不考虑光线沿原路返回的情况)。

4.[物理——选修3-5]

(1)关于光电效应,下列说法正确的是________(填入选项前的字母,有填错的不得分)

A.极限频率越大的金属材料逸出功越大

B.只要光照射的时间足够长,任何金属都能产生光电效应

C.从金属表面出来的光电子的最大初动能越大,这种金属的逸出功越小

D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多

(2)两个质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上。A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示。一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h。物块从静止开始滑下,然后又滑上劈B。求物块在B上能够达到的最大高度。

(18分)(1)在“验证力的平行四边形定则”实验中,需要将橡皮条的一端固定在水平木板上,另一端系上两根细绳,细绳的另一端都有绳套,实验中需用两个弹簧测力计分别勾住绳套,并互成角度地拉橡皮条,某同学认为在此过程中必须注意以下几项,其正确的是(    )

A.拉橡皮条的细绳要长些

B.两根绳必须等长

C.弹簧秤、细绳、橡皮条都应与木板平行

D.用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大

(2)某同学在验证牛顿第二定律的实验中,实验装置如图所示.打点计时器使用的交流电源的频率为50 Hz.开始实验时,细线上挂适当的钩码,释放小车后,小车做匀加速运动,与小车相连的纸带上被打出一系列小点.

①下图给出的是实验中获取的一条纸带的一部分:1、2、3、4是计数点,每相邻两计数点间还有4个打点,计数点间的距离如图所示.根据图中数据计算的加速度a=        m/s2 (保留两位有效数字),计数点2对应的速度大小v2=      m/s (保留两位有效数字).

②实验中,该同学测出拉力F(钩码重力)和小车质量M,根据计算出加速度.发现绝大多数情况下,根据公式计算出的加速度要比利用纸带测出的加速度大.若该同学实验操作过程没有错误,试分析其原因.(至少写两点)________________________________

③另一同学在完成同样的实验时,每次实验在吊挂之处逐次增加一个质量为50g的砝码,利用纸带测出每次小车的加速度,如果小车质量为100g,细绳质量可忽略,则下列曲线最适合描述小车加速度随着吊挂砝码个数变化的是(    )

 

(18分)(1)在“验证力的平行四边形定则”实验中,需要将橡皮条的一端固定在水平木板上,另一端系上两根细绳,细绳的另一端都有绳套,实验中需用两个弹簧测力计分别勾住绳套,并互成角度地拉橡皮条,某同学认为在此过程中必须注意以下几项,其正确的是(    )

A.拉橡皮条的细绳要长些

B.两根绳必须等长

C.弹簧秤、细绳、橡皮条都应与木板平行

D.用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大

(2)某同学在验证牛顿第二定律的实验中,实验装置如图所示.打点计时器使用的交流电源的频率为50 Hz.开始实验时,细线上挂适当的钩码,释放小车后,小车做匀加速运动,与小车相连的纸带上被打出一系列小点.

①下图给出的是实验中获取的一条纸带的一部分:1、2、3、4是计数点,每相邻两计数点间还有4个打点,计数点间的距离如图所示.根据图中数据计算的加速度a=         m/s2 (保留两位有效数字),计数点2对应的速度大小v2=       m/s (保留两位有效数字).

②实验中,该同学测出拉力F(钩码重力)和小车质量M,根据计算出加速度.发现绝大多数情况下,根据公式计算出的加速度要比利用纸带测出的加速度大.若该同学实验操作过程没有错误,试分析其原因.(至少写两点)________________________________

③另一同学在完成同样的实验时,每次实验在吊挂之处逐次增加一个质量为50g的砝码,利用纸带测出每次小车的加速度,如果小车质量为100g,细绳质量可忽略,则下列曲线最适合描述小车加速度随着吊挂砝码个数变化的是(    )

 

(1)在“验证力的平行四边形定则”实验中,需要将橡皮条的一端固定在水平木板上,另一端系上两根细绳,细绳的另一端都有绳套,实验中需用两个弹簧测力计分别勾住绳套,并互成角度地拉橡皮条,某同学认为在此过程中必须注意以下几项,其正确的是(    )

A.拉橡皮条的细绳要长些

B.两根绳必须等长

C.弹簧秤、细绳、橡皮条都应与木板平行

D.用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大

(2)某同学在验证牛顿第二定律的实验中,实验装置如图所示.打点计时器使用的交流电源的频率为50 Hz.开始实验时,细线上挂适当的钩码,释放小车后,小车做匀加速运动,与小车相连的纸带上被打出一系列小点.

①下图给出的是实验中获取的一条纸带的一部分:1、2、3、4是计数点,每相邻两计数点间还有4个打点,计数点间的距离如图所示.根据图中数据计算的加速度a=         m/s2 (保留两位有效数字),计数点2对应的速度大小v2=       m/s (保留两位有效数字).

②实验中,该同学测出拉力F(钩码重力)和小车质量M,根据计算出加速度.发现绝大多数情况下,根据公式计算出的加速度要比利用纸带测出的加速度大.若该同学实验操作过程没有错误,试分析其原因.(至少写两点)________________________________

③另一同学在完成同样的实验时,每次实验在吊挂之处逐次增加一个质量为50g的砝码,利用纸带测出每次小车的加速度,如果小车质量为100g,细绳质量可忽略,则下列曲线最适合描述小车加速度随着吊挂砝码个数变化的是(    )

第三部分 运动学

第一讲 基本知识介绍

一. 基本概念

1.  质点

2.  参照物

3.  参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)

4.绝对运动,相对运动,牵连运动:v=v+v 

二.运动的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大学教材中表述为:v=dr/dt, 表示r对t 求导数

5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是

三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。)

6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好

三.等加速运动

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。此抛物线为在大炮上方h=v2/2g处,以v0平抛物体的轨迹。) 

练习题:

一盏灯挂在离地板高l2,天花板下面l1处。灯泡爆裂,所有碎片以同样大小的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。)

四.刚体的平动和定轴转动

1. 我们讲过的圆周运动是平动而不是转动 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是标量,而极小的角位移是矢量

4.  同一刚体上两点的相对速度和相对加速度 

两点的相对距离不变,相对运动轨迹为圆弧,VA=VB+VAB,在AB连线上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三质点速度分别V,VB  ,VC      

求G的速度。

五.课后习题:

一只木筏离开河岸,初速度为V,方向垂直于岸边,航行路线如图。经过时间T木筏划到路线上标有符号处。河水速度恒定U用作图法找到在2T,3T,4T时刻木筏在航线上的确切位置。

五、处理问题的一般方法

(1)用微元法求解相关速度问题

例1:如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D,BC段水平,当以恒定水平速度v拉绳上的自由端时,A沿水平面前进,求当跨过B的两段绳子的夹角为α时,A的运动速度。

(vA

(2)抛体运动问题的一般处理方法

  1. 平抛运动
  2. 斜抛运动
  3. 常见的处理方法

(1)将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动

(2)将沿斜面和垂直于斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题

(3)将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解

例2:在掷铅球时,铅球出手时距地面的高度为h,若出手时的速度为V0,求以何角度掷球时,水平射程最远?最远射程为多少?

(α=、 x=

第二讲 运动的合成与分解、相对运动

(一)知识点点拨

  1. 力的独立性原理:各分力作用互不影响,单独起作用。
  2. 运动的独立性原理:分运动之间互不影响,彼此之间满足自己的运动规律
  3. 力的合成分解:遵循平行四边形定则,方法有正交分解,解直角三角形等
  4. 运动的合成分解:矢量合成分解的规律方法适用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

参考系的转换:动参考系,静参考系

相对运动:动点相对于动参考系的运动

绝对运动:动点相对于静参考系统(通常指固定于地面的参考系)的运动

牵连运动:动参考系相对于静参考系的运动

(5)位移合成定理:SA对地=SAB+SB对地

速度合成定理:V绝对=V相对+V牵连

加速度合成定理:a绝对=a相对+a牵连

(二)典型例题

(1)火车在雨中以30m/s的速度向南行驶,雨滴被风吹向南方,在地球上静止的观察者测得雨滴的径迹与竖直方向成21角,而坐在火车里乘客看到雨滴的径迹恰好竖直方向。求解雨滴相对于地的运动。

提示:矢量关系入图

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定楼梯,又以不同方式上了两趟自动扶梯,为什么他可以根据测得的数据来计算自动扶梯的台阶数?

提示:V人对梯=n1/t1

      V梯对地=n/t2

      V人对地=n/t3

V人对地= V人对梯+ V梯对地

答案:n=t2t3n1/(t2-t3)t1

(3)某人驾船从河岸A处出发横渡,如果使船头保持跟河岸垂直的方向航行,则经10min后到达正对岸下游120m的C处,如果他使船逆向上游,保持跟河岸成а角的方向航行,则经过12.5min恰好到达正对岸的B处,求河的宽度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河宽l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少?

提示:如图船航行

答案:1.58m/s

(三)同步练习

1.一辆汽车的正面玻璃一次安装成与水平方向倾斜角为β1=30°,另一次安装成倾角为β2=15°。问汽车两次速度之比为多少时,司机都是看见冰雹都是以竖直方向从车的正面玻璃上弹开?(冰雹相对地面是竖直下落的)

2、模型飞机以相对空气v=39km/h的速度绕一个边长2km的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间?

3.图为从两列蒸汽机车上冒出的两股长幅气雾拖尾的照片(俯视)。两列车沿直轨道分别以速度v1=50km/h和v2=70km/h行驶,行驶方向如箭头所示,求风速。

4、细杆AB长L ,两端分别约束在x 、 y轴上运动,(1)试求杆上与A点相距aL(0< a <1)的P点运动轨迹;(2)如果vA为已知,试求P点的x 、 y向分速度vPx和vPy对杆方位角θ的函数。

(四)同步练习提示与答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案为:3。

2、提示:三角形各边的方向为飞机合速度的方向(而非机头的指向);

第二段和第三段大小相同。

参见右图,显然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法与练习一类似。答案为:3

4、提示:(1)写成参数方程后消参数θ。

(2)解法有讲究:以A端为参照, 则杆上各点只绕A转动。但鉴于杆子的实际运动情形如右图,应有v = vAcosθ,v = vA,可知B端相对A的转动线速度为:v + vAsinθ=  

P点的线速度必为  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,为椭圆;(2)vPx = avActgθ ,vPy =(1 - a)vA

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网