题目内容

 (注意:在试卷题上作答无效

   如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。

  (1)求两星球做圆周运动的周期:

  (2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg。求T2与T1两者平方之比。(结果保留3位小数)

 

 

 

 

 

 

 ⑴    ⑵1.01

解析: ⑴A和B绕O做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等。且A和B和O始终共线,说明A和B有相同的角速度和周期。

则有:,解得

对A根据牛顿第二定律和万有引力定律得

化简得  

⑵将地月看成双星,由⑴得

将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得

化简得  

所以两种周期的平方比值为

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网