题目内容

(2002?上海)如图所示,两条互相平行的光滑金属导轨位于水平面内,距离为l=0.2米,在导轨的一端接有阻值为R=0.5欧的电阻,在X≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5特斯拉.一质量为m=o.1千克的金属直杆垂直放置在导轨上,并以v0=2米/秒的初速度进入磁场,在安培力和一垂直于杆的水平外力F的共同作用下作匀变速直线运动,加速度大小为a=2米/秒2、方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略,且接触良好.求:
(1)电流为零时金属杆所处的位置;
(2)电流为最大值的一半时施加在金属杆上外力F的大小和方向;
(3)保持其他条件不变,而初速度v0取不同值,求开始时F的方向与初速度v0取值的关系.
分析:(1)电流为0时,电动势为0,切割的速度为0.即知电流为0的位置为金属杆匀减速运动速度为0的位置,根据匀变速运动的公式求出金属杆的位移.
(2)当速度为v0时,电动势最大,电流最大,根据E=BLv,结合闭合电路欧姆定律,可以求出最大电流.从而可以求出电流为最大值的一半时所受的安培力,根据牛顿第二定律求出外力的大小和方向.(要考虑金属杆的运动方向)
(3)开始时,金属杆所受的安培力FA=
B2L2v0
R
,若FA<ma,F方向与x轴相反;FA>ma,F方向与x轴相同.
解答:解:(1)感应电动势E=Blv,I=
E
R
∴I=0时  v=0
    所以x=
v02
2a
=1m                                 
(2)最大电流  Im=
BLv0
R

I′=
Im
2
=
BLv0
2R

安培力FA=BI′L=
B2L2v0
2R
=0.02N                         
向右运动时 F+FA=ma
F=ma-FA=0.18N       方向与x轴相反                  
向左运动时F-FA=ma
F=ma+FA=0.22N       方向与x轴相反                 
(3)开始时 v=v0,FA=BImL=
B2L2v0
R

F+FA=ma,F=ma-FA=ma-
B2L2v0
R
                   
∴当v0
maR
B2L2
=10m/s 时,F>0  方向与x轴相反              
   当v0
maR
B2L2
=10m/s 时,F<0  方向与x轴相同.
点评:解决本题的关键正确地对金属杆进行受力分析,灵活运用牛顿第二定律.以及掌握导体棒切割磁感线产生的感应电动势E=BLv.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网