题目内容

【题目】如图甲所示,直角坐标系中直线AB与横轴x夹角BAO=30°,AO长为a.假设在点A处有一放射源可沿BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重力忽略不计.在三角形ABO内有垂直纸面向里的匀强磁场,当电子从顶点A沿AB方向射入磁场时,电子恰好从O点射出.试求:

(1)从顶点A沿AB方向射入的电子在磁场中的运动时间t;

(2)磁场大小、方向保持不变,改变匀强磁场分布区域,使磁场存在于三角形ABO内的左侧,要使放射出的电子穿过磁场后都垂直穿过y轴后向右运动,试求匀强磁场区域分布的最小面积S.

(3)磁场大小、方向保持不变,现改变匀强磁场分布区域,使磁场存在于y轴与虚线之间,示意图见图乙所示,仍使放射出的电子最后都垂直穿过y轴后向右运动,试确定匀强磁场左侧边界虚线的曲线方程.

【答案】(1)

(2)

(3)

【解析】(1)根据题意,电子在磁场中的运动的轨道半径R=a,运动轨迹对应的圆心角为

所以时间:

(2)有界磁场的上边界:以AB方向发射的电子在磁场中的运动轨迹与AO中垂线交点的左侧圆弧有界磁场的上边界:以A点正上方、距A点的距离为a的点为圆心,以a为半径的圆弧.故最小磁场区域面积为

(3)设在坐标(x,y)的点进入磁场,由相似三角形得到:

圆的方程为:x2+(y+b)2=a2消去(y+b),磁场边界的方程为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网