ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿ÈçͼËùʾ£¬Óá°ÅöײʵÑéÆ÷¡±¿ÉÒÔÑéÖ¤¶¯Á¿Êغ㶨ÂÉ£¬¼´ÑéÖ¤Á½¸öСÇòÔÚˮƽ¹ìµÀÄ©¶ËÅöײǰºóµÄ¶¯Á¿Êغ㣮ÈëÉäСÇòÖÊÁ¿Îªm1£¬±»ÅöСÇòÖÊÁ¿Îªm2£¬OµãÊÇСÇòÅ׳öµãÔÚˮƽµØÃæÉϵÄͶӰ£®ÊµÑéʱ£¬ÏÈÈÃÈëÉäСÇòm1¶à´Î´ÓÇãб¹ìµÀÉÏSλÖþ²Ö¹ÊÍ·Å£¬ÕÒµ½Æäƽ¾ùÂäµØµãµÄλÖ㬲¢¼ÇÏ´ËλÖþàOµãµÄ¾àÀ룻Ȼºó°Ñ±»ÅöСÇòm2¾²ÖÃÓÚˮƽ¹ìµÀÄ©¶Ë£¬ÔÙ½«ÈëÉäСÇòm1´ÓÇãб¹ìµÀÉÏSλÖþ²Ö¹ÊÍ·Å£¬ÓëСÇòm2Ïàײ£¬¶à´ÎÖظ´´Ë¹ý³Ì£¬²¢·Ö±ðÕÒµ½ËüÃÇƽ¾ùÂäµãµÄλÖþàOµãµÄ¾àÀ룮ÔòÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨£©
A. ʵÑéÖÐÒªÇóÁ½Ð¡Çò°ë¾¶ÏàµÈ£¬ÇÒÂú×ãm1£¼m2
B. ʵÑéÖÐÒªÇóÇãб¹ìµÀ±ØÐë¹â»¬
C. Èç¹ûµÈʽm1x2=m1x1+m2x3³ÉÁ¢£¬¿ÉÑéÖ¤Á½Ð¡ÇòÅöײ¹ý³Ì¶¯Á¿Êغã
D. Èç¹ûµÈʽm1x3=m1x1+m2x2³ÉÁ¢£¬¿ÉÑéÖ¤Á½Ð¡ÇòÅöײ¹ý³Ì¶¯Á¿Êغã
¡¾´ð°¸¡¿C
¡¾½âÎö¡¿ÊµÑéÖÐÒªÇóÁ½Ð¡Çò°ë¾¶ÏàµÈ£¬ÇÒΪÁË·ÀÖ¹³öÏÖÈëÉäÇò·´µ¯£¬ÈëÉäÇòµÄÖÊÁ¿Òª´óÓÚ±»ÅöÇòµÄÖÊÁ¿£¬¼´m1£¾m2£¬¹ÊA´íÎó£»ÊµÑéÖÐÒªÇóÇãб¹ìµÀ²»ÐèÒª¹â»¬£¬Ö»ÒªÃ¿´Î´ÓͬһµãÓɾ²Ö¹»¬Ï¼´¿É£¬¹ÊB´íÎó£»Ð¡ÇòÀ뿪¹ìµÀºó×öƽÅ×Ô˶¯£¬ÓÉÓÚСÇòÅ׳öµãµÄ¸ß¶ÈÏàͬ£¬ËüÃÇÔÚ¿ÕÖеÄÔ˶¯Ê±¼ätÏàµÈ£¬ËüÃǵÄˮƽλÒÆxÓëÆä³õËٶȳÉÕý±È£¬¿ÉÒÔÓÃСÇòµÄˮƽλÒÆ´úÌæСÇòµÄ³õËٶȣ¬ÈôÁ½ÇòÏàÅöÇ°ºóµÄ¶¯Á¿Êغ㣬ÔòÓУºm1v0=m1v1+m2v2£¬ÓÖx2=v0t£¬x1=v1t£¬x3=v2t£¬
´úÈëµÃ£ºm1x2=m1x1+m2x3£¬¹ÊCÕýÈ·£¬D´íÎó£®¹ÊÑ¡C£®