ÌâÄ¿ÄÚÈÝ
ijͬѧÉè¼Æͼ¼×ËùʾʵÑéÑéÖ¤Îï¿éA¡¢B×é³ÉµÄϵͳ»úеÄÜÊغ㣮Îï¿éB×°ÓÐÒ»¿í¶ÈºÜСµÄµ²¹âƬ£¬²âµÃµ²¹âƬ¿í¶ÈΪd£¬AºÍB£¨º¬µ²¹âƬ£©µÄÖÊÁ¿·Ö±ðΪm1ºÍm2£®ÏµÍ³Óɾ²Ö¹ÊÍ·Å£¬µ±µ²¹âƬͨ¹ý¹âµçÃÅ£¨¹Ì¶¨¹âµçÃŵÄ×°ÖÃδ»³ö£©Ê±£¬¿Éͨ¹ý¼ÆËã»úϵͳ¼Ç¼µ²¹âʱ¼ä¡÷t£®¸Ä±äµ²¹âƬµ½¹âµçÃŵľàÀëh£¬Öظ´ÊµÑ飬²É¼¯¶à×éÊý¾Ý£¨AδÅöµ½»¬ÂÖ£©£®
£¨1£©Èôij´Î¼Ç¼µÄµ²¹âʱ¼äΪ¡÷t1Ôòµ²¹âƬµ½´ï¹âµçÃÅ´¦Ê±BµÄËٶȴóСΪ
£®
£¨2£©¸ÃͬѧÉèÏ룺Èô¸ù¾Ý²É¼¯µ½µÄÊý¾ÝÄܵõ½Í¼ÒÒËùʾµÄÖ±Ïߣ¬¾ÍÄÜ˵Ã÷Îï¿éA¡¢B×é³ÉµÄϵͳ»úеÄÜÊغ㣬°´ÕÕÕâ¸öÉèÏ룬ͼÏßµÄ×Ý×ø±ê¿ÉÒÔÊÇ
£¨Ñ¡Ìî¡°¡÷t¡±¡¢¡°¡÷t2¡±¡¢¡°
¡±»ò¡°
¡±£©£¬ÈôµÃµ½¸ÃͼÏßµÄбÂÊΪk£¬Ôò¿É¼ÆËãÖØÁ¦¼ÓËٶȵĴóСΪ
£¨ÓÃk¡¢d¡¢m1ºÍm2±íʾ£©
£¨3£©ÔÚʵ¼ÊÔ˶¯¹ý³ÌÖÐϵͳ¶¯ÄܵÄÔö¼ÓÁ¿¡÷EKСÓÚϵͳÊÆÄܵļõÉÙÁ¿¡÷Ep£¬Ö¸³ö²úÉúÕâ¸öϵͳÎó²î³ý¿ÕÆø×èÁ¦ÍâµÄÁ½¸öÔÒò£º
£¨1£©Èôij´Î¼Ç¼µÄµ²¹âʱ¼äΪ¡÷t1Ôòµ²¹âƬµ½´ï¹âµçÃÅ´¦Ê±BµÄËٶȴóСΪ
d |
¡÷t |
d |
¡÷t |
£¨2£©¸ÃͬѧÉèÏ룺Èô¸ù¾Ý²É¼¯µ½µÄÊý¾ÝÄܵõ½Í¼ÒÒËùʾµÄÖ±Ïߣ¬¾ÍÄÜ˵Ã÷Îï¿éA¡¢B×é³ÉµÄϵͳ»úеÄÜÊغ㣬°´ÕÕÕâ¸öÉèÏ룬ͼÏßµÄ×Ý×ø±ê¿ÉÒÔÊÇ
1 |
¡÷t2 |
1 |
¡÷t2 |
1 |
¡÷t |
1 |
¡÷t2 |
kd2(m2+m1) |
2(m2-m1) |
kd2(m2+m1) |
2(m2-m1) |
£¨3£©ÔÚʵ¼ÊÔ˶¯¹ý³ÌÖÐϵͳ¶¯ÄܵÄÔö¼ÓÁ¿¡÷EKСÓÚϵͳÊÆÄܵļõÉÙÁ¿¡÷Ep£¬Ö¸³ö²úÉúÕâ¸öϵͳÎó²î³ý¿ÕÆø×èÁ¦ÍâµÄÁ½¸öÔÒò£º
ÉþºÍ»¬ÂÖÓÐĦ²Á
ÉþºÍ»¬ÂÖÓÐĦ²Á
£»ÉþÓÐÒ»¶¨µÄÖÊÁ¿
ÉþÓÐÒ»¶¨µÄÖÊÁ¿
£®·ÖÎö£º£¨1£©B¾¹ý¹âµçÃÅʱµÄ˲ʱËٶȿɽüËÆÈÏΪÊÇB¾¹ý¹âµçÃŵÄƽ¾ùËٶȣ®
£¨2£©¸ù¾ÝÊýѧ֪ʶ¿ÉÖª£¬µÃ³öͼÏóÈôΪֱÏߣ¬Ôò¿ÉºÜÈÝÒ×µÄÅжÏÁ½¸öÎïÀíÁ¿Ö®¼äµÄ¹Øϵ£»¸ù¾ÝͼÏóµÄÎïÀíÒâÒåÇó³öͼÏóµÄбÂÊ´óС£¬ÔٵóöÎïÌåµÄÖØÁ¦¼ÓËٶȴóС£®
£¨3£©ÉþºÍ»¬ÂÖÓÐĦ²Á£¬ÉþÓÐÒ»¶¨µÄÖÊÁ¿¶¼»áʹµÃʵ¼ÊÔ˶¯¹ý³ÌÖÐϵͳ¶¯ÄܵÄÔö¼ÓÁ¿¡÷EKСÓÚϵͳÊÆÄܵļõÉÙÁ¿¡÷Ep£®
£¨2£©¸ù¾ÝÊýѧ֪ʶ¿ÉÖª£¬µÃ³öͼÏóÈôΪֱÏߣ¬Ôò¿ÉºÜÈÝÒ×µÄÅжÏÁ½¸öÎïÀíÁ¿Ö®¼äµÄ¹Øϵ£»¸ù¾ÝͼÏóµÄÎïÀíÒâÒåÇó³öͼÏóµÄбÂÊ´óС£¬ÔٵóöÎïÌåµÄÖØÁ¦¼ÓËٶȴóС£®
£¨3£©ÉþºÍ»¬ÂÖÓÐĦ²Á£¬ÉþÓÐÒ»¶¨µÄÖÊÁ¿¶¼»áʹµÃʵ¼ÊÔ˶¯¹ý³ÌÖÐϵͳ¶¯ÄܵÄÔö¼ÓÁ¿¡÷EKСÓÚϵͳÊÆÄܵļõÉÙÁ¿¡÷Ep£®
½â´ð£º½â£º£¨1£©B¾¹ý¹âµçÃÅʱµÄ˲ʱËٶȿɽüËÆÈÏΪÊÇB¾¹ý¹âµçÃŵÄƽ¾ùËÙ¶È
µ²¹âƬµ½´ï¹âµçÃÅ´¦Ê±BµÄËٶȴóСΪv=
£¬
£¨2£©m1¡¢m2×é³ÉµÄϵͳΪÑо¿¶ÔÏó£¬
¶¯ÄܵÄÔö¼ÓÁ¿¡÷Ek=
£¨m1+m2£©v2=
£¨m1+m2£©(
)2
ÖØÁ¦ÊÆÄܵļõСÁ¿¡÷Ep=£¨m2-m1£©gh
Òò´ËÖ»Òª±È½Ï¶þÕßÊÇ·ñÏàµÈ£¬¼´¿ÉÑé֤ϵͳ»úеÄÜÊÇ·ñÊغ㣮
¼´
£¨m1+m2£©(
)2=£¨m2-m1£©gh
ËùÒÔ°´ÕÕÕâ¸öÉèÏ룬ͼÏßµÄ×Ý×ø±ê¿ÉÒÔÊÇ
£¬¼´
=
h
k=
ËùÒÔÖØÁ¦¼ÓËٶȵĴóСgΪ
£®
£¨3£©ÔÚʵ¼ÊÔ˶¯¹ý³ÌÖÐϵͳ¶¯ÄܵÄÔö¼ÓÁ¿¡÷EKСÓÚϵͳÊÆÄܵļõÉÙÁ¿¡÷Ep£¬Ö¸³ö²úÉúÕâ¸öϵͳÎó²î³ý¿ÕÆø×èÁ¦ÍâµÄÁ½¸öÔÒò£ºÉþºÍ»¬ÂÖÓÐĦ²Á£¬ÉþÓÐÒ»¶¨µÄÖÊÁ¿£®
¹Ê´ð°¸Îª£º£¨1£©
£¨2£©
£¬
£¨3£©ÉþºÍ»¬ÂÖÓÐĦ²Á£¬ÉþÓÐÒ»¶¨µÄÖÊÁ¿
µ²¹âƬµ½´ï¹âµçÃÅ´¦Ê±BµÄËٶȴóСΪv=
d |
¡÷t |
£¨2£©m1¡¢m2×é³ÉµÄϵͳΪÑо¿¶ÔÏó£¬
¶¯ÄܵÄÔö¼ÓÁ¿¡÷Ek=
1 |
2 |
1 |
2 |
d |
¡÷t |
ÖØÁ¦ÊÆÄܵļõСÁ¿¡÷Ep=£¨m2-m1£©gh
Òò´ËÖ»Òª±È½Ï¶þÕßÊÇ·ñÏàµÈ£¬¼´¿ÉÑé֤ϵͳ»úеÄÜÊÇ·ñÊغ㣮
¼´
1 |
2 |
d |
¡÷t |
ËùÒÔ°´ÕÕÕâ¸öÉèÏ룬ͼÏßµÄ×Ý×ø±ê¿ÉÒÔÊÇ
1 |
¡÷t2 |
1 |
¡÷t2 |
2(m2-m1)g |
(m1+m2)d2 |
k=
2(m2-m1)g |
(m1+m2)d2 |
ËùÒÔÖØÁ¦¼ÓËٶȵĴóСgΪ
kd2(m2+m1) |
2(m2-m1) |
£¨3£©ÔÚʵ¼ÊÔ˶¯¹ý³ÌÖÐϵͳ¶¯ÄܵÄÔö¼ÓÁ¿¡÷EKСÓÚϵͳÊÆÄܵļõÉÙÁ¿¡÷Ep£¬Ö¸³ö²úÉúÕâ¸öϵͳÎó²î³ý¿ÕÆø×èÁ¦ÍâµÄÁ½¸öÔÒò£ºÉþºÍ»¬ÂÖÓÐĦ²Á£¬ÉþÓÐÒ»¶¨µÄÖÊÁ¿£®
¹Ê´ð°¸Îª£º£¨1£©
d |
¡÷t |
£¨2£©
1 |
¡÷t2 |
kd2(m2+m1) |
2(m2-m1) |
£¨3£©ÉþºÍ»¬ÂÖÓÐĦ²Á£¬ÉþÓÐÒ»¶¨µÄÖÊÁ¿
µãÆÀ£º±¾ÌâÈ«ÃæµÄ¿¼²éÁËÑéÖ¤»úеÄÜÊغ㶨ÂÉÖеÄÊý¾Ý´¦ÀíÎÊÌ⣬ҪÊìÁ·ÕÆÎÕÔȱäËÙÖ±ÏßÔ˶¯µÄ¹æÂÉÒÔ¼°¹¦ÄܹØϵ£¬ÔöÇ¿Êý¾Ý´¦ÀíÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿