题目内容

光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)外以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是(  )
分析:圆环在进入磁场和出磁场的过程中产生感应电流,有热量产生,最终以y=a以下来回摆动,根据能量守恒求出金属环沿抛物线下滑后产生的焦耳热总量.
解答:解:圆环最终在y=a以下来回摆动,以y=b(b>a)处为初位置,y=a处为末位置,知末位置的速度为零,在整个过程中,重力势能减小,动能减小,减小的机械能转化为内能,根据能量守恒得,Q=mg(b-a)+
1
2
mv2.故D正确,A、B、C错误.
故选D.
点评:解决本题的关键知道最终在y=a以下来回摆动,在摆动时无热量产生,以初始位置与y=a位置为研究过程,动能和重力势能的减小量全部转化为热量.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网