题目内容

如图所示,一个小球沿竖直放置的光滑圆环形轨道内壁做圆周运动,圆环的半径为R,关于小球的运动情况,下列说法中正确的是(  )
分析:小球在内轨道中做变速圆周运动,线速度的大小和方向时刻改变,因为具有切线加速度和向心加速度,所以合加速度的方向不一定直线圆心.根据牛顿第二定律求出小球通过最高点的最小速度.
解答:解:A、小球在竖直的光滑圆形轨道内壁做圆周运动,速度的大小时刻改变,方向沿切线方向.故A错误.
B、匀速圆周运动的加速度指向圆心,但变速圆周运动不一定.故B错误.
C、小球的线速度在最高点的速度最小,则有:mg=m
v2
R
,解得最小速度v=
gR
.故C正确.
D、小球通过轨道最高点的加速度的大小最小值为g,那么最低点的加速度的大小一定大于g,故D正确.
故选CD.
点评:匀速圆周运动不变的物理量有角速度、周期、频率、动能,线速度大小、加速度大小.但线速度、加速度是变化的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网