题目内容
如图所示,长为L,倾角为θ的光滑绝缘斜面处于水平向右的匀强电场中,一电荷量为+q,质量为m的小球,以初速度v0从斜面底端A点开始沿斜面上滑,当达到斜面顶端的B点时,速度仍为v0,电场强度E=
tanθ
tanθ.
mg |
q |
mg |
q |
分析:带电小球从底端运动到顶端的过程中受:重力、支持力、电场力,由动能定理可以求出电场强度.
解答:解:在小球从A到B的过程中,由动能定理可得:
-mgLsinθ+qELcosθ=
mv02 -
mv02,
解得:E=
tanθ;
故答案为:
tanθ.
-mgLsinθ+qELcosθ=
1 |
2 |
1 |
2 |
解得:E=
mg |
q |
故答案为:
mg |
q |
点评:本题考查了求电场强度的问题,对带电小球正确受力分成,应用动能定理即可正确解题,本题难度不大,是一道基础题.
练习册系列答案
相关题目