ÌâÄ¿ÄÚÈÝ
20£®¡°ÓÃÓÍĤ·¨¹À²â·Ö×ӵĴóС¡±ÊµÑéµÄ·½·¨¼°²½ÖèÈçÏ£º¢ÙÏòÌå»ýVÓÍ=1mLµÄÓÍËáÖмӾƾ«£¬Ö±ÖÁ×ÜÁ¿´ïµ½V×Ü=500mL£®
¢ÚÓÃ×¢ÉäÆ÷ÎüÈ¡¢ÙÖÐÅäÖƺõÄÓÍËá¾Æ¾«ÈÜÒº£¬°ÑËüÒ»µÎÒ»µÎµØµÎÈëСÁ¿Í²ÖУ¬µ±µÎÈën=80µÎʱ£¬²âµÃÆäÌå»ýÇ¡ºÃÊÇV0=1mL£®
¢ÛÏÈÍù±ß³¤Îª30¡«40cmµÄdzÅÌÀïµ¹Èë2cmÉîµÄË®£¬È»ºó½«ðò×Ó·Û»òʯ¸à·Û¾ùÔȵØÈöÔÚË®ÃæÉÏ£®
¢ÜÓÃ×¢ÉäÆ÷ÍùË®ÃæÉϵÎÒ»µÎÓÍËá¾Æ¾«ÈÜÒº£¬´ýÓÍËᱡĤÐÎ×´Îȶ¨ºó£¬½«ÊÂÏÈ×¼±¸ºÃµÄ²£Á§°å·ÅÔÚdzÅÌÉÏ£¬²¢ÔÚ²£Á§°åÉÏÃèÏÂÓÍËáĤµÄÐÎ×´£®
¢Ý½«»ÓÐÓÍËáĤÂÖÀªµÄ²£Á§°å·ÅÔÚ×ø±êÖ½ÉÏ£¬ÈçͼËùʾ£¬Êý³öÂÖÀª·¶Î§ÄÚС·½¸ñµÄ¸öÊýN£¬Ð¡·½¸ñµÄ±ß³¤l=10mm£®
¸ù¾ÝÒÔÉÏÐÅÏ¢£¬»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©²½Öè¢ÛÖÐÓ¦Ìîд£ºðò×Ó·Û»òʯ¸à·Û£®
£¨2£©1µÎÓÍËá¾Æ¾«ÈÜÒºÖд¿ÓÍËáµÄÌå»ýV'ÊÇ2.5¡Á10-5mL£®
£¨3£©ÓÍËá·Ö×ÓµÄÖ±¾¶ÊÇ3.2¡Á10-9m£®
·ÖÎö £¨1£©Á˽âʵÑéµÄ¾ßÌå²Ù×÷£¬Ã÷È·ðò×Ó·Û»òʯ¸à·ÛµÄ×÷Óã»
£¨2£©¸ù¾ÝŨ¶È°´±ÈÀýËã³ö´¿ÓÍËáµÄÌå»ý£»
£¨3£©¸ù¾ÝËù»³öµÄÓÍĤÃæ»ýÂÖÀª£¬ÔÚËùΧ³ÉµÄСÕý·½ÐÎÖв»×ã°ë¸öÉáÈ¥£¬¶àÓÚ°ë¸öµÄËãÒ»¸ö£¬Í³¼Æ³öÓÍËᱡĤµÄÃæ»ý£®ÔòÓÃ1µÎ´ËÈÜÒºµÄÌå»ý³ýÒÔ1µÎ´ËÈÜÒºµÄÃæ»ý£¬Ç¡ºÃ¾ÍÊÇÓÍËá·Ö×ÓµÄÖ±¾¶£®
½â´ð ½â£º£¨1£©ÔÚ¸ÃʵÑéÖУ¬ÓÉÓÚÓÍËᱡĤµÄ±ßÔµÔÚË®Öв»Ò×¹Û²ìºÍ»³ö£¬Òò´ËdzÅÌÖе¹ÈëË®ºó£¬½«ðò×Ó·Û»òʯ¸à·Û¾ùÔÈÈöÔÚË®ÃæÉÏ£¬ÒÔ±ãÓÚ²Ù×÷£®
£¨2£©Ã¿µÎ¾Æ¾«ÓÍËáÈÜÒºÖк¬Óд¿ÓÍËáµÄÌå»ý£ºV=$\frac{1}{500}¡Á\frac{1}{80}$mL=2.5¡Á10-5ml
£¨3£©ÓÍĤÐÎ×´Õ¼¾ÝµÄ·½¸ñÊý´óԼΪ78¸ö£®ËùÒÔÓÍĤÃæ»ýΪ£ºS=78¡Á10¡Á10mm2=7.8¡Á103mm2
ÓÍËá·Ö×ÓµÄÖ±¾¶Îª£ºd=$\frac{V¡ä}{S}$=$\frac{2.5¡Á1{0}^{-5}¡Á1{0}^{3}}{7.8¡Á1{0}^{3}}$mm=3.2¡Á10-6mm=3.2¡Á10-9m
¹Ê´ð°¸Îª£º£¨1£©ðò×Ó·Û»òʯ¸à·Û£»£¨2£©2.5¡Á10-5£»£¨3£©3.2¡Á10-9£®
µãÆÀ ÔÚÓÍĤ·¨¹À²â·Ö×Ó´óСµÄʵÑéÖУ¬ÈÃÒ»¶¨Ìå»ýµÄ´¿ÓÍËáµÎÔÚË®ÃæÉÏÐγɵ¥·Ö×ÓÓÍĤ£¬¹ÀËã³öÓÍĤÃæ»ý£¬´Ó¶øÇó³ö·Ö×ÓÖ±¾¶£»×¢ÒâÇóÓÍĤÃæ»ýµÄ·½·¨ÒÔ¼°µ¥Î»µÄ»»Ë㣮
A£® | Óò»¿É¼û¹âÕÕÉä½ðÊôÒ»¶¨±ÈÓÿɼû¹âÕÕÉäͬÖÖ½ðÊô²úÉúµÄ¹âµç×ӵijõ¶¯ÄÜ´ó | |
B£® | °´ÕÕ²£¶ûÀíÂÛ£¬ÇâÔ×ÓºËÍâµç×ӴӰ뾶½ÏСµÄ¹ìµÀԾǨµ½°ë¾¶½Ï´óµÄ¹ìµÀʱ£¬µç×ӵĶ¯ÄܼõС£¬µ«Ô×ÓµÄÄÜÁ¿Ôö´ó | |
C£® | ¡°Ì½¾¿ÅöײÖеIJ»±äÁ¿¡±µÄʵÑéÖеõ½µÄ½áÂÛÊÇÅöײǰºóÁ½¸öÎïÌåmvµÄʸÁ¿ºÍ±£³Ö²»±ä | |
D£® | ÔÚ¹âÕÕÌõ¼þ²»±äµÄÇé¿öÏ£¬¶Ô·¢Éä³öÀ´µÄ¹âµç×Ó¼ÓÉÏÕýÏòµçѹ¶Ô¹âµç×Ó¼ÓËÙ£¬Ëù¼Óµçѹ²»¶ÏÔö´ó£¬¹âµçÁ÷Ò²²»¶ÏÔö´ó |
A£® | ¹âµÄ¸ÉÉæºÍÑÜÉä˵Ã÷¹âÊÇ»úе²¨ | |
B£® | µ±²¨Ô´Óë¹Û²ìÕßÏ໥ԶÀëʱ£¬¹Û²ìµ½µÄƵÂʱä´ó | |
C£® | ¹âµÄÆ«ÕñÏÖÏó˵Ã÷¹âÊǺᲨ | |
D£® | Óù⵼ÏËά´«²¥Ðźţ¬ÀûÓÃÁ˹âµÄÑÜÉä |
A£® | µ±r=r0ʱ£¬·Ö×ÓΪÁ㣬·Ö×ÓÊÆÄÜ×îСҲΪÁã | |
B£® | µ±r£¾r0ʱ£¬·Ö×ÓÁ¦ºÍ·Ö×ÓÊÆÄܶ¼Ëæ¾àÀëµÄÔö´ó¶øÔö´ó | |
C£® | ÔÚÁ½·Ö×ÓÓÉÎÞÇîÔ¶Ö𽥿¿½üÖ±ÖÁ¾àÀë×îСµÄ¹ý³ÌÖзÖ×ÓÁ¦ÏÈ×öÕý¹¦ºó×ö¸º¹¦ | |
D£® | ÔÚÁ½·Ö×ÓÓÉÎÞÇîÔ¶Ö𽥿¿½üÖ±ÖÁ¾àÀë×îСµÄ¹ý³ÌÖзÖ×ÓÊÆÄÜÏÈÔö´ó£¬ºó¼õС£¬×îºóÓÖÔö´ó |
A£® | ƽ¾ùËٶȵĹ«Ê½v=$\frac{x}{t}$ | B£® | µç³¡ÖÐijµãµçÊƦµ=$\frac{{E}_{P}}{q}$ | ||
C£® | ´Å¸ÐӦǿ¶ÈB=$\frac{F}{IL}$ | D£® | µçÈÝ C=$\frac{Q}{U}$ |
A£® | Ô˶¯Ô±·Å¼ý´¦ÀëÄ¿±êµÄ¾àÀëΪ$\frac{d{v}_{2}}{{v}_{1}}$ | |
B£® | Ô˶¯Ô±·Å¼ý´¦ÀëÄ¿±êµÄ¾àÀëΪ$\frac{d\sqrt{{{v}_{1}}^{2}+{{v}_{2}}^{2}}}{2{v}_{2}}$ | |
C£® | ¼ýÉäµ½¹Ì¶¨Ä¿±êµÄ×î¶Ìʱ¼äΪ$\frac{d}{{v}_{2}}$ | |
D£® | ¼ýÉäµ½¹Ì¶¨Ä¿±êµÄ×î¶Ìʱ¼äΪ$\frac{d}{\sqrt{{{v}_{2}}^{2}-{{v}_{1}}^{2}}}$ |