题目内容

下列命题中不正确的命题个数是(  )
①若A、B、C、D是空间任意四点,则有
AB
+
BC
+
CD
+
DA
=0;
②|
a
|-|
b
|=|
a
+
b
|是
a
b
共线的充要条件;
③若
a
b
共线,则
a
b
所在直线平行;
④对空间任意点O与不共线的三点A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x、y、z∈R),则P、A、B、C四点共面.
A、1B、2C、3D、4
分析:①由向量的运算法则知等式左边和为零向量,而右边是数字0,从而可判定真假.
②两边平方,利用向量的平方等于向量模的平方,得出两向量反向.
③向量共线的几何意义知所在的线平行或重合.
④利用空间向量的基本定理知错.
解答:解:对于①向量的运算法则知等式左边和为零向量,而右边是数字0,故①错.
对于②,|a|-|b|=|a+b|?|
a
|
2
-2|
a
||
b
|+|
b
|
2
=
a
2
+2
a
b
+
b
2
?
a
b
=-|
a
||
b
|
?
a
b
反向,故②错.
对于③
a
b
共线,则它们所在直线平行或重合
对于④,由空间向量基本定理知,空间任意一个向量
OP
可以用不共面的三个向量
OA
OB
OC
线性表示,所以P、A、B、C四点不一定共面.
故选C.
点评:本题考查向量的运算法则、向量模的平方等于向量的平方、向量的几何意义、空间向量基本定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网