ÌâÄ¿ÄÚÈÝ
£¨1£©ÔÚѧϰº¯ÊýµÄÆæżÐÔʱÎÒÃÇÖªµÀ£ºÈôº¯Êýy=f£¨x£©µÄͼÏó¹ØÓÚµãP£¨0£¬0£©³ÉÖÐÐĶԳÆͼÐΣ¬ÔòÓк¯Êýy=f£¨x£©ÎªÆ溯Êý£¬·´Ö®ÒàÈ»£»ÏÖÈôÓк¯Êýy=f£¨x£©µÄͼÏó¹ØÓÚµãP£¨a£¬b£©³ÉÖÐÐĶԳÆͼÐΣ¬ÔòÓÐÓëy=f£¨x£©Ïà¹ØµÄÄĸöº¯ÊýΪÆ溯Êý£¬·´Ö®ÒàÈ»£®
£¨2£©½«º¯Êýg£¨x£©=x3+6x2µÄͼÏóÏòÓÒƽÒÆ2¸öµ¥Î»£¬ÔÙÏòÏÂƽÒÆ16¸öµ¥Î»£¬Çó´ËʱͼÏó¶ÔÓ¦µÄº¯Êý½âÊÍʽ£¬²¢ÀûÓã¨1£©µÄÐÔÖÊÇóº¯Êýg£¨x£©Í¼Ïó¶Ô³ÆÖÐÐĵÄ×ø±ê£»
£¨3£©ÀûÓã¨1£©ÖеÄÐÔÖÊÇóº¯Êýh£¨x£©=log2
ͼÏó¶Ô³ÆÖÐÐĵÄ×ø±ê£¬²¢ËµÃ÷ÀíÓÉ£®
£¨2£©½«º¯Êýg£¨x£©=x3+6x2µÄͼÏóÏòÓÒƽÒÆ2¸öµ¥Î»£¬ÔÙÏòÏÂƽÒÆ16¸öµ¥Î»£¬Çó´ËʱͼÏó¶ÔÓ¦µÄº¯Êý½âÊÍʽ£¬²¢ÀûÓã¨1£©µÄÐÔÖÊÇóº¯Êýg£¨x£©Í¼Ïó¶Ô³ÆÖÐÐĵÄ×ø±ê£»
£¨3£©ÀûÓã¨1£©ÖеÄÐÔÖÊÇóº¯Êýh£¨x£©=log2
1-x | 4x |
·ÖÎö£º£¨1£©Èôº¯Êýy=f£¨x£©µÄͼÏó¹ØÓÚµãP£¨a£¬b£©³ÉÖÐÐĶԳÆͼÐΣ¬Ôò½«º¯ÊýͼÏóƽÒƺ󣬶ԳÆÖÐÐÄÓëÔµãÖغÏʱ£¬¸Ãº¯ÊýΪÆ溯Êý£¬´ËʱӦÏò×óƽÒÆa¸öµ¥Î»£¬ÔÙÏòÏÂƽÒÆb¸öµ¥Î»£¬¸ù¾ÝƽÒƱ任·¨Ôò£¬¿ÉµÃ´ð°¸£®
£¨2£©¸ù¾ÝƽÒƱ任·¨Ôò£¬¿ÉµÃº¯Êýg£¨x£©=x3+6x2µÄͼÏóƽÒƺó¶ÔÓ¦µÄº¯Êý½âÎöʽ£¬·ÖÎöÆäÆæżÐԺ󣬽áºÏ£¨1£©ÖнáÂۿɵÃÔº¯ÊýµÄ¶Ô³ÆÖÐÐÄ£®
£¨3£©É躯Êýh£¨x£©=log2
ͼÏóÏò×óƽÒÆa¸öµ¥Î»£¬ÔÙÏòÏÂƽÒÆb¸öµ¥Î»ºó¹ØÓÚÔµã¶Ô³Æ£¬¼´¶ÔÓ¦º¯ÊýΪÆ溯Êý£¬¸ù¾ÝÆ溯ÊýµÄ¶¨Ò壬¿ÉÇó³öa£¬bµÄÖµ£¬½áºÏ£¨1£©µÄ½áÂۿɵÃÔº¯ÊýµÄ¶Ô³ÆÖÐÐĵÄ×ø±ê£®
£¨2£©¸ù¾ÝƽÒƱ任·¨Ôò£¬¿ÉµÃº¯Êýg£¨x£©=x3+6x2µÄͼÏóƽÒƺó¶ÔÓ¦µÄº¯Êý½âÎöʽ£¬·ÖÎöÆäÆæżÐԺ󣬽áºÏ£¨1£©ÖнáÂۿɵÃÔº¯ÊýµÄ¶Ô³ÆÖÐÐÄ£®
£¨3£©É躯Êýh£¨x£©=log2
1-x |
4x |
½â´ð£º½â£º£¨1£©º¯Êýy=f£¨x£©µÄͼÏó¹ØÓÚµãP£¨a£¬b£©³ÉÖÐÐĶԳÆͼÐΣ¬
Ôò½«º¯ÊýͼÏóƽÒƺ󣬶ԳÆÖÐÐÄÓëÔµãÖغÏʱ£¬¸Ãº¯ÊýΪÆ溯Êý£¬
´ËʱӦÏò×óƽÒÆa¸öµ¥Î»£¬ÔÙÏòÏÂƽÒÆb¸öµ¥Î»£¬
´Ëʱº¯ÊýµÄ½âÎöʽΪ£ºy=f£¨x+a£©-b
£¨2£©º¯Êýg£¨x£©=x3+6x2µÄͼÏóÏòÓÒƽÒÆ2¸öµ¥Î»£¬ÔÙÏòÏÂƽÒÆ16¸öµ¥Î»£¬
ËùµÃº¯Êýy=£¨x-2£©3+6£¨x-2£©2-16£¬»¯¼òµÃy=x3ΪÆ溯Êý£¬¼´y=g£¨x-2£©-16ΪÆ溯Êý£¬
¹Êº¯Êýg£¨x£©Í¼Ïó¶Ô³ÆÖÐÐĵÄ×ø±êΪ£¨-2£¬16£©
£¨3£©Éèy=h£¨x+a£©-b=log2
-b=log2
-bÊÇÆ溯Êý£¬
Ôòlog2
-b+£¨log2
-b£©=0£¬
¼´log2£¨
•
£©-2b=0£¬¼´log2
-2b=0£¬
µÃ
=22b£¬µÃ£¨1-a£©2-x2=22b£¨16a2-16x2£©£¬
¼´£¨16•22b-1£©x2+£¨1-a£©2-22b•16a2=0£®
ÓÉxµÄÈÎÒâÐÔ£¬µÃ16•22b-1=0£¬£¨1-a£©2-22b•16a2=0£¬
½âµÃb=-2£¬a=
£®
¡àº¯Êýh£¨x£©Í¼Ïó¶Ô³ÆÖÐÐĵÄ×ø±êΪ£¨
£¬-2£©
Ôò½«º¯ÊýͼÏóƽÒƺ󣬶ԳÆÖÐÐÄÓëÔµãÖغÏʱ£¬¸Ãº¯ÊýΪÆ溯Êý£¬
´ËʱӦÏò×óƽÒÆa¸öµ¥Î»£¬ÔÙÏòÏÂƽÒÆb¸öµ¥Î»£¬
´Ëʱº¯ÊýµÄ½âÎöʽΪ£ºy=f£¨x+a£©-b
£¨2£©º¯Êýg£¨x£©=x3+6x2µÄͼÏóÏòÓÒƽÒÆ2¸öµ¥Î»£¬ÔÙÏòÏÂƽÒÆ16¸öµ¥Î»£¬
ËùµÃº¯Êýy=£¨x-2£©3+6£¨x-2£©2-16£¬»¯¼òµÃy=x3ΪÆ溯Êý£¬¼´y=g£¨x-2£©-16ΪÆ溯Êý£¬
¹Êº¯Êýg£¨x£©Í¼Ïó¶Ô³ÆÖÐÐĵÄ×ø±êΪ£¨-2£¬16£©
£¨3£©Éèy=h£¨x+a£©-b=log2
1-(x+a) |
4(x+a) |
1-x-a |
4x+4a |
Ôòlog2
1+x-a |
-4x+4a |
1-x-a |
4x+4a |
¼´log2£¨
1+x-a |
-4x+4a |
1-x-a |
4x+4a |
(1-a)2-x2 |
16(a2-x2) |
µÃ
(1-a)2-x2 |
16(a2-x2) |
¼´£¨16•22b-1£©x2+£¨1-a£©2-22b•16a2=0£®
ÓÉxµÄÈÎÒâÐÔ£¬µÃ16•22b-1=0£¬£¨1-a£©2-22b•16a2=0£¬
½âµÃb=-2£¬a=
1 |
2 |
¡àº¯Êýh£¨x£©Í¼Ïó¶Ô³ÆÖÐÐĵÄ×ø±êΪ£¨
1 |
2 |
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊǺ¯ÊýͼÏóµÄƽÒƱ任£¬Æ溯ÊýµÄ¶¨ÒåºÍÅж¨£¬ÊìÁ·ÕÆÎÕº¯ÊýͼÏóµÄƽÒƱ任·¨Ôò¡°×ó¼ÓÓÒ¼õ£¬ÉϼÓϼõ¡±Êǽâ´ðµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
16£®(2)½â£¨1£©µ±a=1,b=-2ʱ£¬g(x)=f(x)-2,°Ñf(x)ͼÏóÏòÏÂƽÒÆÁ½¸öµ¥Î»¾Í¿ÉµÃµ½g(x)ͼÏó£¬
Õâʱº¯Êýg(x)Ö»ÓÐÁ½¸öÁãµã£¬ËùÒÔ£¨1£©²»¶Ô
£¨2£©Èôa=-1,-2<b<0,Ôò°Ñº¯Êýf(x)×÷¹ØÓÚxÖá¶Ô³ÆͼÏó£¬È»ºóÏòÏÂƽÒƲ»³¬¹ý2¸öµ¥Î»¾Í¿ÉµÃµ½g(x)ͼÏó£¬Õâʱg(x)Óг¬¹ý2µÄÁãµã
£¨3£©µ±a<0ʱ£¬ y=af(x)¸ù¾Ý¶¨Òå¿É¶Ï¶¨ÊÇÆ溯Êý£¬Èç¹ûb¡Ù0£¬°ÑÆ溯Êýy=af(x)ͼÏóÔÙÏòÉÏ£¨»òÏòÏ£©Æ½Òƺó²ÅÊÇy=g(x)=af(x)+bµÄͼÏó£¬ÄÇô¿Ï¶¨²»»áÔÙ¹ØÓÚÔµã¶Ô³ÆÁË£¬¿Ï¶¨²»ÊÇÆ溯Êý£»µ±b=0ʱ²ÅÊÇÆ溯Êý£¬ËùÒÔ(3)²»¶Ô¡£ËùÒÔÕýÈ·µÄÖ»ÓÐ(2)
ΪÁË¿¼²ì¸ßÖÐÉúѧϰÓïÎÄÓëÊýѧ֮¼äµÄ¹Øϵ£¬ÔÚijÖÐѧѧÉúÖÐËæ»úµØ³éÈ¡ÁË610ÃûѧÉúµÃµ½ÈçÏÂÁÐ±í£º
¡¡ÓïÎÄ Êýѧ | ¼°¸ñ | ²»¼°¸ñ | ×ܼơ¡ |
¼°¸ñ | 310 | 142 | 452 |
²»¼°¸ñ | 94 | 64 | 158 |
×Ü¼Æ | 404 | 206 | 610 |
ÓɱíÖÐÊý¾Ý¼ÆËã¼°µÄ¹Û²âÖµÎÊÔÚ¶à´ó³Ì¶ÈÉÏ¿ÉÒÔÈÏΪ¸ßÖÐÉúµÄÓïÎÄÓëÊýѧ³É¼¨Ö®¼äÓйØϵ£¿ÎªÊ²Ã´£¿