题目内容
已知数列{an}是等差数列,a5=5,若(6-a1)![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_ST/3.png)
(1)求an和bn;
(2)记数列Cn=anbn+bn(n∈N*),若{Cn}的前n项和为Tn,求使不等式
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_ST/4.png)
【答案】分析:(1)利用三点共线的结论,可得6-a1=a2+a3,结合a5=5,求出首项与公差,可求an;利用点列(n,bn)在函数
x的反函数的图象上,可求bn;
(2)确定数列的通项,利用错位相减法求和,即可求得结论.
解答:解:(1)设数列{an}的公差为d,则
∵(6-a1)
=a2
+a3
,且A、B、C三点共线,
∴由三点共线的条件,可得6-a1=a2+a3,∴a1+d=2,
∵a5=5,∴a1+4d=5,
∴d=1,a1=1,
∴an=n;
∵点列(n,bn)在函数
x的反函数的图象上
∴
;
(2)Cn=anbn+bn=
,
∴Tn=
,
∴
Tn=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/9.png)
两式相减,可得
Tn=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/12.png)
∴Tn=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/13.png)
∴3-Tn=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/14.png)
∴
等价于![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/16.png)
∴n>6
∴使不等式
成立的最小自然数n的值为7.
点评:本题考查数列的通项与求和,考查数列与不等式的联系,确定数列的通项,正确求和是关键.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/0.png)
(2)确定数列的通项,利用错位相减法求和,即可求得结论.
解答:解:(1)设数列{an}的公差为d,则
∵(6-a1)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/3.png)
∴由三点共线的条件,可得6-a1=a2+a3,∴a1+d=2,
∵a5=5,∴a1+4d=5,
∴d=1,a1=1,
∴an=n;
∵点列(n,bn)在函数
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/4.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/5.png)
(2)Cn=anbn+bn=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/6.png)
∴Tn=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/7.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/9.png)
两式相减,可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/12.png)
∴Tn=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/13.png)
∴3-Tn=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/14.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/16.png)
∴n>6
∴使不等式
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125542211211628/SYS201310251255422112116020_DA/17.png)
点评:本题考查数列的通项与求和,考查数列与不等式的联系,确定数列的通项,正确求和是关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目