题目内容

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线于两点,圆心点到抛物线准线的距离为

(Ⅰ)求抛物线的方程;

(Ⅱ)当的角平分线垂直轴时,求直线的斜率;

(Ⅲ)若直线轴上的截距为,求的最小值.

 

【答案】

(Ⅰ)抛物线的方程为.(Ⅱ)

(Ⅲ)当时,

【解析】(1)求出圆心坐标,抛物线的准线方程,由圆心到准线的距离可求出,就得到抛物线的方程;(2)当的角平分线垂直轴时,可得点的斜率与的斜率互为相反数.设出的坐标,表示出的斜率与的斜率,和点在抛物线上,即可求出的斜率.(3)设出的坐标,由可得的斜率,可写出的方程,同理得的方程.就得到的方程.令,可得,求出函数的值域即得到的最小值.

(Ⅰ)∵点到抛物线准线的距离为

,即抛物线的方程为.····························································· 2分

(Ⅱ)法一:∵当的角平分线垂直轴时,点,∴

,∴

. ··················································································· 5分

.··························································· 7分

法二:∵当的角平分线垂直轴时,点,∴,可得,∴直线的方程为

联立方程组,得

,

.······································································ 5分

同理可得,∴.································· 7分

(Ⅲ)法一:设,∵,∴

可得,直线的方程为

同理,直线的方程为

,································································· 9分

∴直线的方程为

,可得

,∴关于的函数在上单调递增,

∴当时,.·············································································· 12分

法二:设点

为圆心,为半径的圆方程为,·· ①

方程:.······················ ②

①-②得:

直线的方程为.·············· 9分

时,直线轴上的截距

,∴关于的函数在上单调递增,

∴当时,.         12分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网