题目内容
如图1,在正三角形ABC中,AB=3,E、F、P分别是AB、AC、BC边上的点,AE=CF=CP=1.将△AFE沿折起到△A1EF的位置,使平面A1EF与平面BCFE垂直,连接A1B、A1P(如图2).(1)求证:PF∥平面A1EB;
(2)求证:平面BCFE⊥平面A1EB;
(3)求四棱锥A1-BPFE的体积.
【答案】分析:(1)证明PF∥平面A1EB,利用线面平行的判定定理,证明PF∥BE即可;
(2)证明平面BCFE⊥平面A1EB.利用面面垂直的判定定理,证明EF⊥平面A1EB即可;
(3)证明A1E⊥平面BCFE,即可求四棱锥A1-BPFE的体积.
解答:(1)证明:∵CF=CP=x,CA=CB,∴PF∥BE
∵PF?平面A1BE,BE?平面A1BE
∴PF∥平面A1EB;
(2)证明:∵AE=1,AF=2,∠A=60°
∴EF=,∴EF⊥A1E,EF⊥BE
∵A1E∩BE=E
∴EF⊥平面A1EB
∵EF?平面BCFE
∴平面BCFE⊥平面A1EB;
(3)∵平面A1EF与平面BCFE垂直,EF⊥A1E,平面A1EF与平面BCFE的交线为EF
∴A1E⊥平面BCFE
∵
∵A1E=1
∴VA1-BPFE=××1=
点评:本题考查线面平行,面面垂直,考查四棱锥的体积计算.对于图形的翻折问题,关健是利用翻折前后的不变量.
(2)证明平面BCFE⊥平面A1EB.利用面面垂直的判定定理,证明EF⊥平面A1EB即可;
(3)证明A1E⊥平面BCFE,即可求四棱锥A1-BPFE的体积.
解答:(1)证明:∵CF=CP=x,CA=CB,∴PF∥BE
∵PF?平面A1BE,BE?平面A1BE
∴PF∥平面A1EB;
(2)证明:∵AE=1,AF=2,∠A=60°
∴EF=,∴EF⊥A1E,EF⊥BE
∵A1E∩BE=E
∴EF⊥平面A1EB
∵EF?平面BCFE
∴平面BCFE⊥平面A1EB;
(3)∵平面A1EF与平面BCFE垂直,EF⊥A1E,平面A1EF与平面BCFE的交线为EF
∴A1E⊥平面BCFE
∵
∵A1E=1
∴VA1-BPFE=××1=
点评:本题考查线面平行,面面垂直,考查四棱锥的体积计算.对于图形的翻折问题,关健是利用翻折前后的不变量.
练习册系列答案
相关题目
己知在锐角ΔABC中,角所对的边分别为,且
(I )求角大小;
(II)当时,求的取值范围.
20.如图1,在平面内,是的矩形,是正三角形,将沿折起,使如图2,为的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。
(1)求证:平面;
(2)设二面角的平面角为,若,求线段长的取值范围。
21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值
22. 已知函数 ,
(Ⅰ)若在上存在最大值与最小值,且其最大值与最小值的和为,试求和的值。
(Ⅱ)若为奇函数:
(1)是否存在实数,使得在为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;
(2)如果当时,都有恒成立,试求的取值范围.