题目内容
已知f1(x)=sinx+cosx,记f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*且n≥2),则f1(
)+f2(
)+…+f2013(
)=
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
1
1
.分析:通过求导得出其周期即可得出.
解答:解:∵f1(x)=sinx+cosx,∴f2(x)=f1′(x)=cosx-sinx,f3(x)=f2′(x)=-sinx-cosx,f4(x)=-cosx+sinx,f5(x)=
(x)=sinx+cosx=f1(x)
∴…,fn(x)=fn+4(x)(n∈N*且n≥2),
又f1(
)+f2(
)+f3(
)+f4(
)=0,
∴f1(
)+f2(
)+…+f2013(
)=f1(
)=sin
+cos
=1.
故答案为1.
| f | ′ 4 |
∴…,fn(x)=fn+4(x)(n∈N*且n≥2),
又f1(
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
∴f1(
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
故答案为1.
点评:通过求导得出其周期是解题的关键.
练习册系列答案
相关题目