题目内容

 (22) (本小题满分14分)

如图,椭圆ab>0)的一个焦点为F(1,0),且过点(2,0).

(Ⅰ)求椭圆C的方程;

(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AFBN交于点M.

 (ⅰ)求证:点M恒在椭圆C上;

(ⅱ)求△AMN面积的最大值.

(1)椭圆C方程为.(2)同解析


解析:

解法一:

(Ⅰ)由题设a=2,c=1,从而b2=a2-c2=3,

所以椭圆C方程为.

(Ⅱ)(i)由题意得F(1,0),N(4,0).

A(m,n),则B(m,-n)(n0),=1. ……①

AFBN的方程分别为:n(x-1)-(m-1)y=0,

n(x-4)-(m-4)y=0.

M(x0,y0),则有  n(x0-1)-(m-1)y0=0, ……②

n(x0-4)+(m-4)y0=0, ……③

由②,③得

x0=.

所以点M恒在椭圆G上.

(ⅱ)设AM的方程为x=xy+1,代入=1得(3t2+4)y2+6ty-9=0.

A(x1,y1),Mx2y2),则有:y1+y2=

|y1-y2|=

令3t2+4=λ(λ≥4),则

|y1-y2|=

因为λ≥4,0<

|y1-y2|有最大值3,此时AM过点F.

AMN的面积SAMN=

解法二:

(Ⅰ)问解法一:

(Ⅱ)(ⅰ)由题意得F(1,0),N(4,0).

A(m,n),则B(m,-n)(n≠0),              ……①

AFBN的方程分别为:n(x-1)-(m-1)y=0,                  ……②

n(x-4)-(m-4)y=0,                  ……③

由②,③得:当.          ……④

由④代入①,得=1(y≠0).

当x=时,由②,③得:

解得与a≠0矛盾.

所以点M的轨迹方程为即点M恒在锥圆C上.

(Ⅱ)同解法一.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网