题目内容
若实数x, y满足x2+y2-2x+4y=0,则x-2y的最大值是( )
A B10 C9 D5+2
A B10 C9 D5+2
B
先根据约束条件画出图形,设z=x-2y,再利用z的几何意义求最值,只需求出直线z=x-2y过图形上的点B时,从而得到z=x-2y的最大值即可.
解答:解:先根据x,y满足x2+y2-2x+4y=0画出图形,
设z=x-2y,
将z的值转化为直线z=x-2y在y轴上的截距,
当直线z=x-2y经过点A(2,-4)时,z最大,
最大值为:10.
故x-2y的最大值为10.
解答:解:先根据x,y满足x2+y2-2x+4y=0画出图形,
设z=x-2y,
将z的值转化为直线z=x-2y在y轴上的截距,
当直线z=x-2y经过点A(2,-4)时,z最大,
最大值为:10.
故x-2y的最大值为10.
练习册系列答案
相关题目