题目内容

19、已知:命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1,则
①否命题是“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1,”,是真命题;
②逆命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”,是假命题;
③逆否命题是“若m>1,则函数在f(x)=ex-mx(0,+∞)上是减函数”,是真命题;
④逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”,是真命题.
其中正确结论的序号是
.(填上所有正确结论的序号)
分析:先分别判断原命题的真假,再结合四种命题的关系和各命题的形式进行判断.
解答:解:“若函数f(x)=ex-mx在(0,+∞)上是增函数,则f'(x)=ex-m≥0在(0,+∞)上恒成立,
即m≤ex在(0,+∞)上恒成立,故m≤1.则原命题正确.
①原命题的否命题是“若函数f(x)=ex-mx在(0,+∞)上不是减函数,则m>1”,因为“增函数”的否定不是“减函数”,所以①错误.
②逆命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”.当m≤1,则f'(x)=ex-m>0在(0,+∞)恒成立,故逆命题正确.所以②错误.
③逆否命题是“若m>1,则函数在f(x)=ex-mx(0,+∞)上不是减函数”,所以③错误.
④逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”,因为原命题和逆否命题为等价命题,所以④为真命题,所以④正确.
故只有有④正确.
故答案为:④.
点评:本题主要考查命题的四种形式以及四种命题之间的关系,是基础题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网