题目内容
10、设函数f(x)在其定义域(0,+∞)上的取值不恒为0,且x>0,y∈R时,恒有f(xy)=yf(x).若a>b>c>1且a、b、c成等差数列,则f(a)f(c)与[f(b)]2的大小关系为( )
分析:由于已知中的函数f(x)为抽象函数,故我们可以在熟悉的基本函数中找到一个满足条件的函数,如对数函数,然后利用特殊情况分析法进行解答.
解答:解:令f(x)=lgx满足题目要求,
再令a=30,b=20,c=10满足a>b>c>1且a、b、c成等差数列,
则f(a)f(c)=lg20•lg10=1+lg2
[f(b)]2=lg220=(1+lg2)2>1+lg2
故选A
再令a=30,b=20,c=10满足a>b>c>1且a、b、c成等差数列,
则f(a)f(c)=lg20•lg10=1+lg2
[f(b)]2=lg220=(1+lg2)2>1+lg2
故选A
点评:本题考查的知识点是等差数列的性质及抽象函数及其应用,利用特殊情况进行分析是解答选择题常用的方法.
练习册系列答案
相关题目