题目内容

过椭圆C:
x2
a2
+
y2
b2
=1的左焦点作直线l⊥x轴,交椭圆C于A,B两点,若△OAB(O为坐标原点)是直角三角形,则椭圆C的离心率e为(  )
A、
3
-1
2
B、
3
+1
2
C、
5
-1
2
D、
5
+1
2
分析:首先求出A、B两点坐标,进而求出/AB/、/AO/、/BO/的长,再根据△OAB是直角三角形得出/AB/2=/AO/2+/BO/2即b2=ac,然后由b2=a2-c2,求出离心率.
解答:解:由题意知A(-c,
b2
a
) B(-c,-
b2
a

∴/AB/=2
b2
a
 AO=BO=
c2+(
b2
a
)
2

∵△OAB是直角三角形
∴/AB/2=/AO/2+/BO/2
4b4
a2
=2c2+
2b4
a2

整理得b2=ac
∵b2=a2-c2
∴e2+e-1=0
又∵e>0
∴e=
5
-1
2

故选C.
点评:本题考查了椭圆的性质,以及直角三角形的有关知识,解题过程注意e>0,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网