题目内容
求和:![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_ST/0.png)
【答案】分析:根据 (1+x)n=
+
+
+…+
,两边同时对x求导,再令 x=1,可得答案.
解答:解:∵(1+x)n=
+
+
+…+
,
两边同时对x求导可得 n(1+x)n-1=
+2
+3
+…+n
.
令 x=1可得,n•2n-1=
,
故答案为 n•2n-1.
点评:本题主要考查二项式定理的应用,求函数的导数,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/3.png)
解答:解:∵(1+x)n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/7.png)
两边同时对x求导可得 n(1+x)n-1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/11.png)
令 x=1可得,n•2n-1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173544512718515/SYS201311031735445127185012_DA/12.png)
故答案为 n•2n-1.
点评:本题主要考查二项式定理的应用,求函数的导数,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列 {}的前n项和为( )
| A. | | B. | | C. | | D. | |
考点: | 数列的求和;等差数列的性质. |
专题: | 等差数列与等比数列. |
分析: | 利用等差数列的前n项和即可得出Sn,再利用“裂项求和”即可得出数列 { |
解答: | 解:∵Sn=4n+ ∴ ∴数列 { 故选A. |
点评: | 熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键. |