题目内容
已知下列三组条件:(1)A:α=
,B:sinα=
;(2)A:x=1,B:x2+(a2-1)x-a2=0(a为实常数);(3)A:定义域为R上的函数f(x)满足f(1)>f(2),B:定义域为R的函数f(x)是单调减函数.其中A是B的充分不必要条件的是______.(填写所有满足要求的条件组的序号)
π |
6 |
1 |
2 |
(1)∵sin
=
,即由A能推出B,反之不成立,比如sin
=
,但α≠
.A是B的充分不必要条件
(2)当x=1时,x2+(a2-1)x-a2=0,反之当a=0时,方程x2-x=0的根是1,0.由B推不出A.A是B的充分不必要条件
(3)函数f(x)=-x2满足A,但在定义域R上不是减函数,A不是B的充分条件
故答案为:(1)(2)
π |
6 |
1 |
2 |
5π |
6 |
1 |
2 |
π |
6 |
(2)当x=1时,x2+(a2-1)x-a2=0,反之当a=0时,方程x2-x=0的根是1,0.由B推不出A.A是B的充分不必要条件
(3)函数f(x)=-x2满足A,但在定义域R上不是减函数,A不是B的充分条件
故答案为:(1)(2)
练习册系列答案
相关题目