题目内容
【题目】如图1,矩形中,,是的中点,以为折痕把折起,使点到达点的位置,且,如图2.
(1)求证:平面平面;
(2)求直线与平面所成角的正弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ).
【解析】
(Ⅰ)取BC的中点F,AE的中点O,连结,,,则可证平面,得出BC⊥PO,又PO⊥AE得出PO⊥平面ABCE,于是平面APE⊥平面ABCE.
(II)建立空间直角坐标系,求得平面的法向量为, 设直线与平面所成的角为,根据求解即可.
(Ⅰ)取的中点,的中点,连接,,,
由已知得,四边形是梯形,,
∴,∴,
∵,∴,
又,∴平面,
∴
由已知得,∴,
又与相交∴平面 ,
∵平面,
∴平面平面.
(II)建立空间直角坐标系,如图所示,设,
则,,,,
∴,,设平面的法向量为,
则,∴,取,得,
又,设直线与平面所成的角为,
则 .
练习册系列答案
相关题目
【题目】为了传承经典,促进学生课外阅读,某校从高中年级和初中年级各随机抽取100名学生进行有关对中国四大名著常识了解的竞赛,图1和图2分别是高中年级和初中年级参加竞赛的学生成绩按照,,分组,得到的频率分布直方图.
(1)完成下列的列联表,并回答是否有的把握认为“两个学段的学生对四大名著的了解有差异”?
成绩小于60分的人数 | 成绩不小于60的人数 | 合计 | |
初中年级 | |||
高中年级 | |||
合计 |
(2)规定竞赛成绩不少于70分的为优秀,按分层抽样的方法从高中,初中年级优秀学生中抽取5人进行复赛,在复赛人员中选3人进行面试,记面试人员中来自初中段的为随机变量X,求随机变量X的分布列与期望.
其中
附表:
0.10 | 0.05 | span>0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6635 | 10.828 |